P\,

AD A093'1 86

FILE_CO

N

A UNCLASS IFIED ' e
llCUhITV CLASMVICATION OF THIS PAGE (When Dale Eniered)

READ INSTRUCTIONS
BEFORE, COMPLETING FORM

' REPORT DOCUMENTATION PAGE 5

T REPOAT NGMBER nu/qu ® 1, GOVT ACCE o 3 IPIENT'S CATALOG HUMBER
AIM 554 B e) P]
4/_'rm.u (end Subliile) M E.;, [2% 41,'rvu OF REPORT & umoo CovERED
/EMACS MANUAL FOR ITS_ USERS ' / s L E #Memorandum g //
/ s / ¥, v §. PERPORMING ORC: REPORT NUMBEN
7. AUTHO monm | cT"ancT‘n GRANT NUMBIA(e)
d) Richard M/Stal'lman / (/_5 NOOOM -75-C- 0643,
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. FROGRA I.E T ROJ CY, TASK
Artificial Intelligence Laboratory / ARER UWORKUNIT NUMHERS
545 Technology Square //)) Z ~Z{
Cambridge, Massachusetts 02139
11, CONTROLLING OFFICE NAME AND ADDRESS T 12 REPORT-DATE
Advanced Research Projects Agency (/QQ % June ¥980 /
1400 Wilson Blvd , -~ 1. "NUMDER OF FAGES
Arlington, Virginia 22209 218
14, MONITORING AGENCY NAME & ADD;ESS(M difterent from Controlling Oflice) 15. SECURITY CLASS. (of thie repert,
Office of Naval Research _ UNCLASSIFIED

Information Systems

Ariington, Virginia 22217

152, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Dnstribution of this document is unlimited.

WAI% 55

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side Il necessary and identity by block number) ~——

T YT CURLTIY PRI 100

CTRETD 70 DDC COUTAT

f V]

lerf"‘;:‘[‘ce Manual SUKPER OF PAGES SHICH L. 0
L IISTSLY,

'Disp1ay Editor r

.r’f'This manual documents the use and simple customization of the display editor

20. ABSTRACT (Continue on reveres side 1l necessary and identity by dlock number)

EMACS with the ITS operating system. The reader is not expected to be a
programmer. Even simple customizations do not require programming skill,
but the user who is not interested in customizing can ignore the scattered
customization hints. This is primarily a reference manual, but can also be
used,a primer.

S

DD ' 1473&(EDITION OF 1 MOV 68 13 OBsOLETE UNCLASSIFIED [

S/N 0302-014- 6601 | —
IMCURITY CLASSIFICATION OF THIS PAGE (When Dats Rntered)

L)Y s 4

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE CCPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

MASSACHUSETTS INSTIHUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

8 June 1980

Al Memo 554

FMACS Manual for I'TS Users

by
Richard M. Stallman

A reference manual

for the extensible, customizabie, selfdocumenting {7 o~

! -
{ R
i 3

reai-time display editor i

This manual corresponds to EMACS version 147 :

Ry I W gl

‘This report deseribes work done at the Artificial ntelligence Laboratory of the Massachusetts Institute of
Technology. Suppoert for the labetatory’s research is provided in part by the Advanced Research Projects
Ageney of the Department of Defense under Otfice of Naval Rescarch contract NOO14-75-C-0643.

IR LAl

TR VN

e

Ui g

RSP RMATIA St Ak 2

> ‘teble of Contents

[] Table of Contents

Introduction 3

1. The Organization of the Screen) S

1.1. "The Mode Line 6

2. Character Sets and Command Input Conventions 9

2.1. The 9-bit Command Character Set 9

2.2, Prefix Characters 10

2.3. Commands, FFunctions, and Variables 10

24. Notational Conventions for ASCIH Characters 11

3. Basic Editing Commands 13

: 3.1. Inscrting Text 13

3.2, Muoving the Cursor 13

3.3. Lrasing Text : 14

: 34. Viles 14

3.5. Help 15

3.6. Using Blank Lines Can Make Editing JFaster 15

: 4. Giving Nunteric Arguments to EMACS Commands 17

4.1, Autoarg Mode 18

5. Fatended {Meta-X) Commands and l:'un('!ions i9

5.1. lssuing Extended Commands i9

2. Arcane Information about M-X Commands 21

7 6. Moving Up And Down Levels 5

6.1. Subsystems 25

6.2. Recursive Editing Levels 26

6.3. Lxiting Levels; Exiting EMACS 26

7. Sclf-Documentation Commands 29

3 8. “Vhe Mark and the Region 31
1 8.1. Commands to Mark 'Textual Objects 32

8.2. ‘Ihe Ring of Marks 32
£ 9. Killing and Moving Text - 35
i 9.1. Deletion and Killing : 35 :

z 8.2. Un-Killing 37
4 9.3. Other Ways of Copying Text 32 :
18. Scarching 41
1. Commands for English ‘Text 43
11.1. Word Commands 43

11.2. Scntence and Paragraph Commands . 4

11.3. Indentation Commands for Text 46

114, Text Filling 47

11.5. Case Conversion Commands 49

it

11.6. Fout-Changing
11.7. Underiining

12, Commasids for Fixing Typos

12.1. Killing Your Mistakes
12.2. Transposition
12.3. Case Conversion

13. Iile Handliag

13.1. Visiting Files

13.2. How to Undo Drastic Changes to a File

13.3. Auto Save Mode: Protection Againsi Crashes
13.4. Listing a Fife Directory

13.5. Clcaning a File Directory

13.6. DIRED, the Directory Editor Subsystem
13.7. Miscellancous File Operations

13.8. The Dircctory Comparison Subsystem

14. Using Maltiple Buffers

14.1. Creating and Sclecting Buffers
14.2. Using Existing Buffers
14.3. Killing Buffers

15. Controlling the Display
16. Two Window Mode

16.1. Muliiple Windows and Multipic Buffers

17. Narrowing

18. Commands for Manipulating Pages

18.1. Editing Guly Onc Page at a Time

19. Replacement Commands

19.1. Query Replace
19.2. Other Scarch-and-teop Functions
19.3. TETO Search Strings

20. Iditing Programs

2.

20.1. Major Modes

20.2. Compiling Your Program

20.3. Indestaticn Commands for Code

20.4. Automatic Display Of Matching Parcntheses
20.5. Manipulating Comments

20.6. 1.isp Mode and Muddle Mode

20.7. L.isp Grinding

20.8. Editing Assembly-1Language Programs

20.9, NMajor Modes for Other Languages

‘The TAGS Package.

21.1. How to Make a Tags File for a Program

21.2. How to Teil EMACS You Want to Use TAGS
203, Junmiping toa Tag

21.4. Other Operations on Tag ‘Fables

EMACS Manual for I'1'S Users

50
51

53
53

55
57
57
59
59

63

67
67
68
58

n
3
74
7
”
80
3

83
84
85

87

87
88
89

91
93

91
98

101

101
102
103
103

S NS G S AV

i el By ' el ¥
il “Mrwmmﬁfr-b‘immwm.mf\lawmuwm«mmmmwmmumwh\‘,mww.wmmvu[mmnmnmmﬂuuum ik
il b ¥

T PP TIE

o= RIS
Ry
* Fable of Contents
- 21.5. What Constitutes a Tag 105
% 21.6. Adding or Removing Source Files 106
- 21.7. How a'Tag Is Described in the Tag Table 107
= 21.8. Tug Tables for INIFO Structured Decumentation Files 108
g 22. Simple Customization 111
%i 22.1. Minor Modcs 111
H 22.2. Libraries of Commands 112
£ 22.3. Variables 114
22.4. The Syntax Table 115
22.5. S Flags 117
22.6. Local Variables in Files 118
227, Init Files and EVARS Files 120
228, Kevbuard Macros 124
23, The Minibuffer 121
24, Couesting Mistahes and EMACS Problems 129
24.1. Cancelling a Conumand 129
24.2. What io 1o if EMACS Acts Strangely 130
24.3. Undoing Changes to the Buffer 132
244, Journai Files 133
24.5. Reporting Bugs 136
25, Word Abbreviation Input 141
23.1. Basic Usage 142
25.2. Advance ' Usage 145
i 25.3. ‘Teco Details for Extension Writers 148
26. The PICTURE Subsystem, an Fditor for Text Pictures 151
1 27, Sesting Functions 153
Appendix . Particular Types of Terminals 155
3]
fig 1.1, Ideal Keyboards 155
5 1.2, Kevboards with an "Edit” key 156
3 1.3, ASCH Keyboards 156
! 14. Upper-casc-only ‘T'erminals 157
1.5. The SLOWLY Package sor Slow Terminals 158
B
Appendix I, Use of EMACS from Printing Terminals 161
Glossary 163
Comusand Index m
= Catalog of Libraries 185 %
;‘ Index of Variables 189
% FMACS Command Chart s of 03/27/80) 195
=i Indey 23

Dot b s i

RN AN P i, v o

i
#
SRR Pl asbows

YRR

w3

A o 10

Preface

Preface

This manual documents the use and simple customization of the display cditor EMACS with the
I'TS operating system. “The reader is not expected to be a programmer. Even simple customizations do not

sequire programming skill. but the user who is not interested in customizing can ignore the scattered
custormization hints,

I'his is primaily a refeience manugl, but can also be used as a primer. However, | recommend that the
newcomer first use the on-line, learn-by-doing tutorial TEACHEMACS, by typing [TEACHEMACS{cr>
vhile in HACERN. With i, you Iearn EMACS by using EMACS on a specially designed Tile which descetibes

commands, tel's you when to try them, and then explains the results you sce. “This gives @ more vivid
introduction than a printed manual.

On fisst seading, you need not make any attempt to menorize chapters 1 and 2, which describe the
notational comentions of the manual and the general appearance of the EMACS display screen, T is cnough
to be aware of what questions age answeted in these chapters. so you can seler back when you later become
interested in the answeis. After reading the Basic Hditing chapter you should practice the commands there.
The next few chapters desciibe fundamental techniques and concepts which are referred to again and again,

I is best to understand them thoroughly, experimenting with them if necessary.

T'o find the documentation on a particular command, Jook in the index if you know what the commmand is.
I you know vaguely what the command doces, look in the command index. “The command index contains a
line or two about cach command, and a cross-reference o the section of the manual which describes the

command i more detail. Related conumands are grouped together. ‘There is also a glossary, with a cross
reterence for cach teim.

The manual is availuble in three forms: the published form, the ¥ IPT form, and the INFFO form. The
published form is pristed by the Autificizl Intelligence lab. The LT forns is available on Jine for printing on
unsuphisticated hard copy devices such as terminals wnd line printers. "Phe INEFFQ form is Tor on-line perusal
with the INFFQ progiam. All three forms are substantially the same. “There are also two versions of the text:

one for use with FI'S, and one for use with Twenex, DEC's "TOPS-20" system. Both versions are available in
all three forms.

EMACS is available for distribution for use on Fenex and Twenex systems (1t does not run on Bottoms- 10,
and the convenion wauld not be casy). Mail us a 400 foot mag tape if you want it. 1t does not cost anything;
instead. you must join the EMACS software-sharing communc. The conditions of membership are that you
must scid back any improvenients you make to EMACS, including any libraries you write, and that you must

not redistribute the system except exactly as you got it, complete. (You can also distribute your

i3t L B

YYIAT,

i Il L D

T

o A

L AN b AR

A0 o

MMMM

i

T

wMi

EMACS Manual for I'FS Users

customizations, separately.) It is-pathetic to:hear:from-sitcs-which .reccived.incomplete copics_ lacking the

sources. asking me ycars later-whether sources are available.

FFor information on-the underlying philosophy 0Ff EMACS:.and-the.lessons fearned:from its development,
write to aic for a copy of Al memo 519, "EMACS, the Extensible, Customizable-Sclf-Documenting Display

Editor", or sciid Arpanct mail to RMS@MIT-Al

Yours in -hackiag,

/ "z \1/2 :
<X D :
\ / !

"Richard-M. Stallman

MI'T Artificial Intelligence Lab
545 Tech Square, rm 913
Cambridge, MA 02139

(617) 253-6765 !

G 1 ikl b

et

YL T

1y e g

P

T T Gt A kot i by it

d

Introduction

Introduction

R —— L LT

You are about to read about EMACS, an advanced, sclf-documenting, customizable, extensible real-time
display cditor.

We say that EMACS is a display editor because nonmally the text ocing edited is visible on the screen and

is updated automaticatly as you type your commands. Sce section | [Display), page 5.

We call it « real-time editor because the display is updated very frequently, usually after cach character or
pair of characters the user 4 pes. This minimizes the amount of information you must heep in your head as

vou edits. Sce section 3 [Basicl. page 13.

We call FMACS advanced because it provides fucilitics that go beyond simple insertion and deletion;
filling of text: automatic indentation of programs: viewing two files at once: and dealing in terms of
chanacters, words, lings, sentences, paragraphs, and pages. s well as expressions and comments in scveral
different progranuming languages. 1t is much casier o type one comimand meaning “go to the end of the

paragsaph” than to find the desired spot with repetition of simpler commands,

Self-documenting means that at any time you can type atseecial character. the “Help® key, to find out what
your aptions are. You can aiso usc it to find out what any command docs, or to find all the commuands that

pettain to i topic. See scction 7 [{leip). page 29.

Customizable means that you can change the definitions of EMACS commands in little ways. For
cxample, if you use a progranming Linguage in which comments start with <** and end with **>_ you can teli
the EMACS commieat numipulation commands to usc those strings. Another smit of customization is
rearrangecent of the command set. For example, if you prefer the four basic curser motion commands (up,
down, left and right) on keys in a diamond pattern on the keyboard, you can have it. See scction 22.1
[MinorModes). page 111.

A

Extensible means that you can go beyond simple customization and write centirely new commands,
programs in the language TECQ. EMACS is an "onlinc cxtensible™ system, which means that it is divided
into many functions which call cach other, any of which can be redefined in the middle of an editing session.
Any part of PFMACS can be replaced without making o separate copy of all of EMACS. Many already written i
extensions are distributed with EMACS, and some Gncluding DIRED, PAGE, PICTURE, SOR'T, TAGS,

and WORDAB) we docamented in this sanual, Although only a programmer can write an extension,

anybody can use it afterward.

Extension requires programming in "TECO, a rather obscure Lainguage. f you are clever and bold, you

[——"1

EMACS Manual for I'1'S-Users

miight wish to learn how. Sce the file INFO;CONV >, for advice on learning TECO. ‘This manual docs not

cven try to explain how to write THCO programs, but it does contain soume notes which arc useful primarily to
the cxtension writer.

W 6 e e e

SR SSAMAD I SO AALD A it e

‘hmlllﬂu&

bl

A

B s ki A bk

"

DT TR

1

NS

RN LY

|

ey

M gy

t
i i
ikl 1L

“The Organization of the Screen 5

1. The Organization of the Screen

EMACS divides the screen into several arcas, cach of which contains its own sorts of infonnation. The
bigzest arca, of course, is the one in which you usually sec the text you are cditing. ‘I'ie terminal's cursor
usuatly appears in the middle of the text, showing the position of "point”, titc location at which editing takes
place. While the cursor appears to point as a character, point should be thought of as berween two characters:
it points before the character that the cursor appears on top of. Tenminals have only one cursor, and when
output is in progress it must appear where the typing is being done. This does not mean that point is muoving.

Itisonly that FMACS has ne way to show you the location of point except when tire tenninal is idle.

The C-X = command tells you precisely what is in the teatlif it is not clear frma iite display. (If youarea
begimner, don’t worry if you don’t understand this paragraph). 1t prints the row aid column of the location of
the cursor on the sereen, and the numeric code for the character after the cursor. Sce section e [Filling),

page 47.

‘The top lines of the sereen are usually available for text but are sometimes pre-empted by an “error
message”, which says that some command you gave was illegal or used improperly. or by typeout from a
command (such as. a listing of a fiic dircctory). The error message or typeout appears there for your
information, but it is not part of the file you arc editing, and it gozs away if you iype any command. If you
wanit to make it go away immediately but not do anything clsc. you can type a Space. (Usually a Space inserts
itscelf. but when there is an error message of typeout an the screen it does nothing but get rid of that.) The
terminal’s cursor always appears at the end of the error message or txpeout. but this docs not mean that point

has moved. "Fhe cursor moves back (o the location of point afier the error message of typcout goes zway.

A few lines at the bottom of the sereen compose what is called “the echo arca”™. “Fchoing™ means printing
out the commands that vou type. EMACS commands are usually not echoed at all, but if you pause for more
than a sccond in the middle of a1 multi-character conunand then the whole command (including what you
have typed so far) is echoed. “This behavior is designed to give confident users optimum respoase. while

giving nervous users information on what they arc doing.

EMACS also usces the ccho arca for reading and displaying the arguments for some commands, such as

searches, and for printing inforniation in response to certain commands.

“The fine above the echo arcais known as the "mode line®. 1Cis the fine that usually starts with “EMACS
(something)”. 1ts purpose is 1o tell what is going onin the EMACS, and to show any reasons why comnungds
wnary not be interpreted in the standard way. The mode lise is very important, and . you are surpriscd by how

EMACS reacts to your commands you should look there for enlightenment

s

IR L CARS!

o LA

i

o iyt
e e e

e

EMACS Manual for 1S Uscrs

1.1. The Mode Line

‘The normal sitearc is that charicters you type are interpreted as EMACS commands. When this is so,
you are at “top level”, and the maode line has this format:

EMACS type (major minor) bfr: file --pos-- *

“type” is usually not there. Whien it is there. it indicates that the EMACS job you arc using is not an
ordinary one, in that it is acting as the servant of some other job. A type of "LEDIT™ indicates an EMACS
scrving one or more Lisps, while s type of "MAILT indicates an EMACS which you gt by asking for an
“edit escape” whife compuosing mail to send. The type can also indicate a subsystem which is mnning.'such as
RMAIL. The type isstored internally as a string in the varable Editor Type. The variable is normatly zero.

"nrjor” is atwins the name of the "major mode”™ you are in. Atany time. EMACS & in ane and only one
of its powible majoy modes, The major modes availuble include Fundamentai maode, Text mode (whikh
EMACS arts out in), Lisp mede. PASCAL maode, and others. Sce section 20 [Major Modes), page 87, for

details of how the modes difier and how to select one. Sometimes tic name of the major mode is followed

immediately with another name inside square-brackets (7} - J*). ‘This name is called the “suhmaode”. The

submode indicates that you are "inside” of a command which causcs vour editing commands to be changed

emporarily, but dots not change w/nir 1oxt you are editing. A subinode is a kind of recussive editing level.
See section 6.2 [Submaodcs], page 26.

‘minor” is a list of some of the minor modes which are tumed onat the momeat. "Fill™ means that Auto
it mede is on. "Save™ micans that Auto-saving is an. "Save{of)™ means that Auto-saving is on in gencral
but momentarily wmed off {it was overridden the last time a file was sclected). “Atom™ means that Atom

Word mode is on. "Abbrev” means that Word Abbrev mode is on. "Ovwst™ means that Overwrite mode is

on. Sce scction 22,7 iMinor Modes], page 111, for more information. "Def™ mcans that i keylxrrd macro is

5 being defined: altheugh this is not exactly a minor mode., it is still uscful to #e reminded about. See

section 22.8 {Keyboard Macrs), page 124, :

“bft” is the name of the currently sclected buffer. Each buffer has its own namce and holds a file being

cdited: this is how EMACS can hold several files at once. But at any time you arc editing only onc of them, :

the "selecied” buffer. When we speak of what some command docs to "the bufler™, we are talking about the
currently sclected buffer. Multiple bufTers makes it casy to switch around between severs files, and then it is .
very usclul thzt the mode line tells you which onc you arc editing at any time. However, before you leamn
how to use multiplc huffers, you will always be in the buffer called "Main™, «which is the only onc which cxists

A 19
e

{

i 8

when EMACS stans up. If the name of the buffer is the same as the first name of the file you are visiting,

then the buffer namc ss feft out of the mode line. See section 14 [Buffers]. pagce 67, for huw to use more thain
one bufferin one EMACS.

I'he Organization of the Screen

“file" is the name of the file that you are editing. 1t is the last file that was visited in the buffer you are in.

If"(ROY" (for "read only") appears after the filename, it means that if you visit another file in the same
buffer then changes you have made to this file will be lost unless you have explicitly asked to save them, Sce
: section 13.1 [Visiting], page S5, for more information. If there is no "(RO)" and you visit anothei file in the
: same buffer, EMACS will offer o save your changes first, if there are any changes.

‘The star at the end of the mode line means that there are changes in the buffer which have not been saved
in the file. 1 the file has not been changed since it was read in or saved, there is no star.

"pos” tells you whether there is additional text above the top of the screen, or below the bottom. If your
file is small and it is all on the screen, --pos- is omitted. Otherwise, it is --TOP-- if you arc looking at the

beginning of the file, --BOT-- if you are looking at the end of the file, or --un%-- where nn is the percentage
of the file above the top of the screen.

Sometimes you will see --MORE-- instead of --nn%--. “This happens when typeout from a command is too
long to fit on the screen. 1t means that if you type a Spiace the next scieenful of information will be priited.
[T you are not interested. typing anything but a Space will cause the rest of the output 1o be discarded. Typing
a Rubout will discard the output and do nothing else. ‘Typing any other command will discard the rest of the

output and also do the command. When the output is discarded, "FLLUSHED" is printed after the
~-MORE--,

. So much for what the mode line says at top level. When the modc linc doesi't start with "IEIMACS”, and

st

doesn’t look anything like (he Breakdown given above, then EMACS is not at top level, and your typing will
not be undetstood in the usual way. ‘This is because you are inside a subsysten, such as INFO (Sce
section 6.1 [Subsystems), page 25.), or in a recursive editing level, such as Edit Options (Sce section 6.2
[Recursive Editing]. page 26.). 'The mode line tells you what command you are inside.

D pp—

If you are accustomed to other display editors, you may be surprised that EMACS doces not always display
the page number and line number of point in the mode line, This is because the. text is stored in a way which
makes it difficult to compute this information, I)isblznying them all the time would be too slow to be borne,
When you want to know the page and line number of point, you must ask for the information with the M-X

What Page command. Sce scetion 18 [Pages). page 79. However, once you are adjusted to EMACS, you will

ik iy

rarcly have any reason to be concerned with page numbers or line numbers,

LA A B L

Wy

s A AL ol £ bl PN

AP ORI BB s

" Rl

T IR
ok

oA § 01 100

MACS Manual for I'I'S Users

K

R S G RAR N s 5w

PR R e R P T

L

Character Sets and Command Input Conventions

2. Character Sets and Command Input Conventions

In this chapter we introduce the terminology and concepts used to talk about EMACS commands. In
particular, EMACS is designed for a kind of keyboard with two special shift keys which can type 512 different
characters. instead of the 128 which ordinary ASCH keyboards can send.

2.1. The 9-bit Command Character Set

1EMACS is designed ideatly to be used with terminals whose keyboards have a pair of shilt keys, labelled
“"Control” and "Meta”, cither or both of which can be combined with any character that yeu can type. These
shift keys produce "Control” characters and "Mcta" characters, which e the editing commands of EMACS.
Ovdinary characters like "A" which are neither Control nor Meta arc used for inserting text. We name cich
of these characters by prefising “Control=" or "Meta-" (abbreviated "C-" and "M-") to the character: thus,
Meta-l° or M-17is the chaacter which is I typed with the Meta key held down. Control in the EMACS
command character set is not precisely the same as Control in the ASCH character set. but the general

purposc is the same.

The 128 characters, multiplied by the four possibilitics of die Control and Meta keys, make 512 characters
in the EMACS command character set. So it is called the S12-character set io distinguish it from ASCIH,
which has only 128 characters. [t is also called the "9-bit” character set because 9 bits are required to express
a number from 0 to 511, Note that the 512-character set is used only for keyboard comimands. Characters in
files being edited with EMACS are ASCII characters.

Sadly, most terminals do not have ideal EMACS keyboards. In fact, the only ideal keyboards are at MIT.
On nonideal keyboards, the Control key is somewhat fimited (it can be combined with only some other
characters, not with all), and the Meta key may not exist at all, We make it possible to use EMACS on a
nonideal terminal by providing two-character circumlocutions, made up of characters that you can type, for
the characters that you can’t type. ‘These circumnlocutions start with a “bit prefix character”; sec below. Also

see the appendix for more detailed information on what to do on your type of terminal,

It may scem an unfortunate coincidence that both the EMACS 9-bit character set and the ASCH character
set use the term "Control* lor not exactly the same thing. ‘This came about because the 9-bit character set was
imented by generalizing ASCH. tn ASCH, only letters and a few punctuation’ marks can be made into
Control characters; we wanted to have a Control version of every character. FFor exainple, we have
Control-Space, Control-digits, and Control-=. We also have Control-A and Control-a which are two
dificrent characters; however, all such pairs have the same meaning as EMACS commands, so you can forget

about this quirk of the character st unless you begin customizing. In practice, you can forget all about the

iy §

T e ki sl g

-

AR

Pna

G B B e L S

10 BEMACS Manual for 1'1'S Users

distinction between ASCH Control and EMACS Control, except to realize that EMACS uses some "Control”

characters which are not on your keyboard.

In addition to the 9-bit command character set, there is one extra character called Help. 1t cannot be
combined with Control or Meta. lts use is to ask for documentation, at any time. Like the the 9-bit
characters, the Help character has its own key on an ideal keyboard, but must be represented by something
clse on other keyboards. The circumlocution we use is Control-_ H (two characters). ‘The code usec
internally for Help is 4110 (octal).

We have given some command characters special names which we always capitalize. "Return” or “<cr>"”
stands for the carriage return character, code 015 (all character codes are in octal). Note that C-R means the
character Control-R, never Return, "Rubout” is the character with code 177, labeled "Deiete” on some
keyboards. “Alimode™ is the character with code 033, somctimies labeled “Escape”. Other command
characters with special names wie Tab (code 011), Backspace (code 010). Linefeed (code 012), Space (code
0403, Exct ("1". code 041), Comma (code 054), and Period (code 056). Control is represented in the nuimeric
code for a character by 200, and Mcta by 400; thus, Mcta-Period is code 456 in the 9-bit character set.

2.2. Prefix Characters

A non-ideal keyboard can only send certain Control characters, and may completely lack the ability to
send Meta characters. “To use these commands on such keyboards, you nced to use two-character
circumlocutions starting with a "bit prefix” character which turns on the Control or Meta bit i the second
chatacier. The Altmode character turns on the Meta bit, so Altmode X can be used to type a Meta-X, and
Alunode Control-O can be used to type a C-M-0. Altmode is known as "the Mctizer”. Other bit prefix
characters are C-~ for Control, and C-C for Control and Meta together. Thus, C-~ < is a way of typing a
Control-<, and C-C < can be used to type C-M-<. Because C-~ is awkward to type on most keyboards, we

have tricd to minimize the number of conunands for which you will need it.

‘There is another prefix character, Control-X which is used as the beginning of a large set of two-characicr
commands known as "C-X commands”. C-X is not a bit prefix character, C-X A is not a circumiocution for

any single character, and it must be typed as twe characters on any terminal.

2.3. Commands, Functions, and Variables

Mast of the EMACS commands documented herein are members of this 9-bit character set. Others are
pairs of characters from that sel. However, EMACS doesn’t really define commands directly. Instead,
EMACS delines "functions”, which have long names such as "R Down Real Line™, and then the functions

are connceted to "commands” such as C-N through a dispatch table. When we say that C-1v moves the cursor

1 R

Character Sets and Command Input Conventions

down a linc we are glossing over a distinction which is unimportant for ordinary use. but essential for

customization: it is the function R Down Real Line which knows how to move down a line. and C-N moves
down g linc because it is connected to that function. We usually ignore this subtlety to keep things simple. ‘o
give the extension-writer the information he needs, we state the name of the function which really does the

work in pareatheses after mentioning the command name. For example: "C-N (*R Down Real Linc) moves

the cursor down a tine”. In the EMACS wall ehart, the function names arc used as a form of very brief

documentation for the command characters. Sce section 5.2 [FFunctions], page 21.

AL A i & s

The "~R " which appears at the front of the functicn name is simply part of the name. By convention, a
ceHain class of funetions have names which start with "~R "

While we are on the subject of customization information which you should not be fiightened of, it's a

good tme 1o tel! you about variables. Often the description of a command will say "to change this, set the

vaniable Mumble Foo". A varfable is a name used to remember a value. EMACS contains many variables

wivich are theie se that you can change thent if you want to customize. ‘The variables value is examined by

b mmnanmid ¢

some eommand, and changing the vatue makes the command behave differently. Until you are interested in
ctistomizing, you can ignore this information. When you are ready to be interested, read the basic
inforartion on variables, and then the information on individuat variables will make sense. See section 22.3
[Variables), page 114,

2.4. Notational Conventions for ASCH Chatacters

Control characiers iz files, your EMACS bufie:, or TECO programs, arc ordinary ASCH characters and
are represented as upacraw or caret followed by the corresponding non-control charsacter: control-E is

represented as th. Hhe special 9-bit characier set applies only to typing EMACS conumands.

CRL¥ is the teaditionsi werm for a carriage reters fellowed by a linefeed. This sequence of two characters
s what sepaies fio: . in text being cdited. Normally, EMACS commands make this sequence appear to be a
single character, but 1'ECG code must deal with the realities. A return or a linefeed which is not part of a

CREY s called "stray”. EMACS usualiy treats them as part of the line and displays them as tM and).

Other AZCH characters with special names include tab (control-1, 611), backspace {controi-H, 010),

fineiced (cont-oi 3 012), alunod (033), space (HOY, and rabout (177). Tab and control-1 are different as 9-bit

L LB

connmand casan ters, bt when tedized o ASCH they become the same. OQur comvention is that names off

ASCH chaacters aie inlower Gise, white names o9 bit commiz .l characters are in upper case.

Most control characte.s when present in the EMACS buffer are displayed with a caret; thus, ~A for ASCH

tA. Rubout is display>d as ~?, i:ccuuse by stretching the meaning of "control” it can be interpreted as ASCH

I T R T [N LA RIIELIAL

EMACS Manual for IS Users

control-2. A bLackspace is usually displayed as ~H since it is ASCH control-H, because most displays cannot

do overprinting.

Altmode is the ASCII code 033 sometimes labeled “Escape™ or "Alt". Altmode is often represented by
itself in this document (remember, it is an ASCHI character and can therefore appear in files). It looks like

this: 4. On some terminals, alimocde looks just like the dollar sign character. I that’s so on yours. you should

assume that anything you see in the on-line documentation which looks like a dollar sign is really an altmode

unless you are specifically told it’s a dollar sign. The dollar sign character is not paiticularly important in

EMACS and we will rarcly have reason to mention it

Basic Editing Commands

P SRR A

3. Basic Editing Commands

w e

bt s o8 e 0o I

We now give the basics of how to enter text, make corrections, and save the text in a file. If this material is

new to vou, you might learn it more casily by running the TEACHEMACS program.

3.1, Inserting Text

1 N

To insent printing characters into the text you are editing, just type them, Normally (when EMACS is at

1op level). they are inserted into the text at the cursor, which moves forward. Any characters after the cursor
move forward teo. [F the cursor is in between a 1FOO and a BAR, typing XX produces and displays
FOOXNBAR with the cursor before the "B*. 'This method of insertion works for printing characteis and
space, but other characters act as editing commands and do not insert themselves., f you need to insert a

control character, Altmode. Vab or Rubout, you must quote it by typing the C-Q command first. "C" refers
to the Contiol bit. Sce section 2 [Characteis], page 9.

To carrect text you have just inserted, you can use Rubout. Rubout deletes the character before the cursor

. s I b il A
vt 0t g i b sk L Al

(not the one that the cuisor is on top of or under; that is the chaiacter afier the cursor). The cursor and all

characteys alter it move backwards. You can rub out a line boundary by typing Rubout when the curso, is at
the beginning of a line.

)

I p [i i
KIS AN

‘To end a line and start typing a new one, type Return (“R CRLE). You can also type Retnn to break an
existing line into two. A Rubout after a Return will undo it. Return really inserts two characters, a carriage

return and a lincleed (i CRLE). but almost everything in EMACS makes them look like just one character,
which you can think of as a ling-separator character.

P e e o

If you add too many characters to one line, without breaking it with a Return, the line will grow to occupy
two (or more) lines on the screen, with a “1*

at the extreme right margin of all but the Tast of them. "The 1"
: says that the following screen line is not really a distinct fine in the file, but just the "continuation” of a line
: 100 long to fit the screen.

3.2. Moving The Cursor

To do mere than iesert chamcters, you have o know how to move the cursor, Here are a few of the

comnends for doing that.

C-A Muoves to the heginning ol the fine,
-k Moves to the end of the line,
C-¥ Muoves forward over one character. :

?
1 e S——s e SRS

14

EMACS Masual for I'FS Users

C-B Moves backward over one character.

C-N Moves down one line, verticaily. If you start in the middle of onc linc, you end in the
middle of the next. From the last line of text, it creates a new fine.

C-p Moves up one line, vertically.

C-l Clears the screen and reprinits everything, C-U C-1. reprints just the line that the cursor is
on.

c-T Transposes t aracters (the ones before and after the cursor),

M~ Movestothc of your text.

M-> Mores to the cr.a of your text.

3.3. Erasing Text

Rubout Delete the character before the cursor.
C-D Delete the character after the cursor.
C-K Kill to the end of the line.
You already know about the Rubout command which deletes the character before the cursor. Another
commmand, Control-1), deletes the character after the cursor, causing the rest of the text on the line to shift lefi.

I Contiol-1) is typed at the end of i line, that line and the next fine are joined together.

To erase a targer amount of text, usc the Control-K command, which kills a line at a time. If Control-K is
done at the beginning or middle of a line, it kills all the text up to the end of the line. If Control-K is done at

the end of a line, it joins that line and the next line.

Sce section 9.1 [Kilting], page 35. for more flexible ways of killing text.

34. Files

‘The comnunds above are sufficient for creating text in the BMACS buffer. “The more advanced FMACS
commands just make things casier. But to keep any text permanently you must put it in a file. You do that
by choosing a filename, such as 1FO0, and typing C-X C-V FOOKcr>. ‘This "visiis” the file FOQ (actually,
FOO > on your workiug dircctory) so that its contents appear on the screen for editing. You can make
changes, and then “save” the file by typing C-X C-S. 'This makes the changes permanent and actually
changes the file I'D0. Until then, the changes are only inside yous BEMACS, and the file FOO is nat really
changed. 11 the file FOO doesn’t exist, and you want to create it visit it as if it did exist. When you save your
text with C-X C-8 the file will be created.

Of corrse, there is a lot more to learn about using files. Sce section 13 [Files), page S5.

i

o

a1 oh

=

E
=z

=
=
|
=
=

M &

T —

u i N
: R AR
TR, TS MR AN B AR €€, 11K 3 ¢ 40 T AN 10 5y 10

Basic Iditing Commands

3.5. Help

If you forget what a command docs, you can find out with the Help character. ‘The IHelp character is
‘Top-H if you have a Top key, or Control-_ H (two chaiacters!) otherwise. ‘T'ype Help followed by C and the

command you want to know about. Help can help you in other ways as well. Sce scction 7 fHelp]. page 29.

3.6. Using Blank Lines Can Make Editing Faster

Cc-0 Insert onc or mure blank lines after the cursor.
C-XCO Delete all but one of many consecutive blank lines.
One thing you should know is that it is much more efficient to insert text at the end of a line than in the
middle. So if you want to stick a new line before an existing one, it is better 0 make a blank line there first
and then type the text into it, 1ather than inserting the new text at the beginning of the existing line and then

insert a line separator. ¢ is also clearer what is going on while you are in the middle.

To make a blank line, you can type Return and then C-B. But there is a single character for this: C-O
{Customizers: this is the built-in function “R Open Ling). So. instead of typing FOO Return to insert a line
containing 1FQ0, type C-0 FOO. [f you want to insert many lines, you should type many C-O's at the
beginning (or you can give C-O an argument to tell it 1w many blank lines to make. Sce scction 4
[Arguments], page 17, for how). As you then insert lines of text, you will notice that Return behaves
strangely: it "uses up™ the blank lines instead of pushing them down. If you don’t use up adl the blank lines,
you can type C-X C-O (the function ~R Delete Blank Lines) to get rid of all but one. C-X C-0 on a blank
line amaong many blank lines reduces them to one, C-X C-O on a nonbiank line deletes any blank lines which

follow.

W S A QO

TN TR

ALyl

ACS Manual for 1S Users

i
:

16

K
IR, v
ol iy P g ‘ e w e wu e L S p——

e

A

sy T SR

Giving Numeric Arguments to EMACS Commands

4. Giving Numeric Arguments to EMACS Commands

Any EMACS command can be given a numeric argument. Some commands interpret the argument as a
repetition count. For xa aple, Living an argument of ten to the C-FF command (move forward one character)

moves forward ten characsers. With these commands, no argument is equivalent to an argument of one.

Some commands care only about whether there is an argument, and not about its valuc; for example, the

conunard M-Q ("R Fill Paragraph) with no arguments fills text, but with an argument justifics the text as
well,

Stane commands use the value of the argument, but do something peculiar when there is no argument.
For examiple, the C-K (*R Kill Line) command with an argument <n> kills <nd lines and the line separators
that fullow them. But C-K with no argument is special; i Kills the text up to the next line separator, or, if
puint is right at the end of the line, it kills the line separator itself. Thus, two C-K commands with no

arguments can kill a nonblank line, just like C-K with an argument of one.

The fundamental way of specifying an argument is 1o use the C-U (*R Universal Argument) conunand
followed by the optional minus sign and the digits. C-U followed by a non-digit other than 4 minus sign has
the special meaning of "multiply by four”. It multiplies the argument for the next command by four. Two
such C-U's multiply it by sixteen. Thus, C-U C-U C-F moves firward sixteen characters, 1tis a good way to
move forward "fust™, since it moves about 1/4 of a fine on most tepminals. Other useful combinations are
C-U C-N, C-U C-U C-N (move down a good fraction of a screen), C-U C-U C-O (make "a lot” of blank
lines), and C-U C-K (kidl four lines). With conunands ke M-Q that care whether there is an argument but

not what the value is, C-U is a good way of' saying "I want an argument”,

A few commands treat a plain C-U differently from an ordinary argumtent. A few others may treat an
argument of just a minus sign differently from an argument of -1, These unusual cases will be described

when they come up; they are always for reasons of convenicence of use.

There arc other, terminal-dependent ways of specifying arguments. They have the same effect but may be
casicr o type. Sce the appendix. I your ierminal has a numeric keypad which sends something recognizably
different from the ordinary digits, it is possible to program EMACS (o allow use of the numeric keypad for
specifymg arguments. The libraries VES2 and V0 provide such a feature for those twao types of terminals,

See scetion 22.2 [Libraries], page 112,

A AN W

U

b bl L1

EMACS Manual for 11 S Users

4.1. Autoarg Mode

Users of ASCII keyboards may prefer to use Autoarg mode, in w

hich an
Most commands merely by typing the digits. Digits preceding an ordinary in

g an Alumode or Control character serve
2. set the variable Autoarg Mode nonzero,

argument can be specified for
serting character are themselves
asan argument to it and are not inserted.

inserted. but digits precedin

To turn on this mod

Autoingument digits ccho

at the bottoni of the screen: the fi
them as an argumen, ‘To insert some digits

rub it out. C-G cancels the

st nondigit ca

uscs them to be inserted or uses
othing clse, vou must follow them with
digits. while Rubout inserts them all

and n

a Space and then

and then rubs out the fast.

B S o P R T L

IR R AL v T PR Sl U i

T 18 AN ORI, 5 IR A e

v

[L

Latended (Meta-X) Commands and FFunctions

5. Extended (Meta-X) Commands and Functions

M-X Begin an eatended command. Follow by conmmand name and arguments.
C-M-X Begin an extended command. Follow by the cc .nmand name only: the command will

ask for any arguments,
C-X Alunode

Re-execute recent extended command.

While the most often useful EMACS commands are accessible via one or two characters, the less often
used commands go by long names to make them casier to remember. “They are known as “cxtended
commands” becausce they exiend the set of two-character commands. They arc also called “M-X commands®,
because they all stint with the churacter Meta-X (*R Eatended Comnmund). The M-X is followed by the
comnund’s name. actually the name of a function to be called. Terminate the name of the function with a
Return (unless you are supplying string arguments; sce below). For example. Meta-X Auto Fill Modeler>

imokes the function Auto Fill Maode. This function when executed wirns Aute il made on or off,

We say that M-X Fooer?> calls "the function FOO". When documienting the individual extended

commumnds, we will call themy "functions” to avoid confusion between them and the one oy two character i

“commands™. We will also use "M-X" as a title like "M for funcdons, as in "use M-X Foo”. The

“extended commumd™ is whit you npe, starting with M-X, and what the command does is call a function.

o AT DD i

The name that goes in the command is the name of the commiand and is also the name of tie function. and =~

bath terms will be used.

5.1. Issuing Extended Commands

5.1.1. Typing The Command Name

When you type M-X, the cursor moves down to the eche area at tiie bottom of the screen. "M-X" is

printed there, and when you type the command name it echaes there. This is known as "reading a line in the

echo area”. You can use Rubout to cancel ane character of the command name, or C-U or C-1) 1o cancel the

8 e B

entire command name. A C-G cancels the whole M-X, and so does a Rubout when the comnumd nne is

cmpty. These editing characters apply to anything which reads line in the echo arca.

The string "M-X" which appcars in the echo arca is catled a “prompt”. "The prompt always tells you what
sort of argument is required and whist it §s going (o be used for; "M-X" mcans that you are inside of the M-X

command agd should type the name of a function to be called.

20 EMACS Manual for H'S Users

5.1.2. Completion

You can abbreviate the name of the command, as long as the abbreviation is unambiguous. You can also
use completion on the function name. This means that you type part of the command name, and EMACS

visibly fills in tne rest, or as much as car be determincd from the part you have typed.

You request completion by typing an Altmode. For cxample. if you type M-X Au Altmode, the "Au”
expands to "Auto ™ because all command names which start with "Au” ceatinuce with "to ™. If you ask for
completion when there are several alteraatives for the next character. the bell rings and nothing clsc happens.
Altmode is also the way to terminate the command name and bezgin the string arguments, but it only docs this
if’ the commmand name completes in full. In that casc. an Alunode (#) appears after the command name in the
ccho area. (If the comimnand name docs not compleze in full, it is ambiguous. so it would be uscless to type the

argaments yet).

Space is another way to request completion. but it completes only one word. Successive Spaces complete
one word cach, until cither there are multiple sossibilitics or the end of the name is reached. If the first word
of acommand is Edit, List. Kill, View or Whay, it is suflicient to type just the first letter and complete it with a
Space. (This does not follow from the usual definition of comgletion, since the single letter is ambiguous; it is

asnecial feature added because these wards are so common).

Typing "?" it the middie of the command name prints a list of all the comimand names which begin with

what vou lave tped so far. You can then go on typing the name.

= 5.1.3. Numeric Arguments and String Arguments

Some functions can use muneric prefix argumeats. Simply give the Mcta-X commmand an argument and
MetrX will pass it along to the function which it calls. “The argumceat appears before the "M-X" in the

prompt, as in "69 M-X", to remind you that the function you call will reccive a numeric argument.

Sume functions require “'string arguinents” or "suffix argiments”. For those functions, the function name
is ierminated with a singic Alunode, after which come the arguments, separated by Altmodes. Afier the last
argument, type a Return to cause the furciion to be exceuted. FFor example, the functicn Describe prints the

full documientation f.a function (or a variable) whose name must be given as a string argument. An example

s D I o T i

of using it is Mcta-X DescribeApropos<erd, which prints the full description of the funciion named

!

Apropos.

" e

[

An altemnate way of calling extended commanads is with the command C-M-X (R Instant Extended
Command). 1t differs from plain M-X in that the function itself reads any string arguments. “This can be

useful if the string argument is a filename or a command name, becausc the function knows that and gives the

’ngﬂ PR TR 1t g 1

Extended (Meta-X) Commands and Functions ‘ 24

argument special treaiment such as completion. However, there are compensating disadvantages. For one
thing, since the function has already been invoked, you can’t rub out from the arguments into the function
name. For another, it is not possible to save the whole thing, function name and arguments, for you to recall
with C-X Altmode (see below). So C-M-X saves noihing for C-X Altmode. ‘The prompt for C-M-X is
"C-M-X". You can merride it with the variable Instant Command Prompt.

5.1.4. Repeating an Extended Command

The last few extended commands you have exccuted are saved and you can repeat them. We say that the

extended command is saved, rather than that the function is saved, because the whole command, including
arguments, is saved.

To re-exccute a saved command, use the command C-X Alimode (*R Re-exccute Minibulter). 1t retypes
the Tast extended command and ask for confirmation. With an argument, it repeats an carlier extended
command; 2 mcans repeat the next to the fast command, cte. You can also use the minibuffer to edit a

previous extended command and re-execute it with changes (See section 23 [Minibuffer], page 127.).

Note: Extended commands and functions were once called "MM commands”, but this term is obsolete. 1f
you see it in any user documentation, please report it. Ordinary one or two character commands used to be

known as "~R" commands, and the term may still be used in the online documentation of some functions;
please report this also,

5.2. Arcane Information about M-X Commands

You can skip this scction if you arc not interested in customization, unless you want to know what is going
on behind the scenes,

52.1. MM

Extended commands weie once called "MM commands, because "MM™ is a 'TIECO expression which
looks up a command name to find the associated program, and runs that program. Thus, the THCO
cxpression

MM AproposéWordd
means (o 1un the Apropos command with the argument "word". You could type this expression into a
minibuffer and get the same results as you would get from Meta-X Aproposé Word<cer>, In fact, for the first

year or so, EMACS had no Mcta-X command, and that’s what people did. Sce section 23 [MinibutYer],
page 127, for information on the minibuffer.

Lus Lk

1

oy Sl i AR

o abiaddin s Db a3

i b A5

ot e o I i

2

(RGN PERY

MLt
ol bk

)

sk

S

22 EMACS Manual for 1S Users

"M actually tells TECO to call the subroutine in g-register "M". ‘The first "M" means “call”, and the
sccond "M" says what to call. "This subroutine takes a string argument which is the name of a function and
locks it up. Calling a function is built into "TECO, but looking up the name is not; it is implemented by the
program TECO calls *M". "That's why "MM" is called that and not "Run” or "IF+Q".

5.2.2. Argmments in TECO Code

Functions can use one or two "prefix arguments” or "numeric arguments”. These are numbers (actually,
T'ECO expressions) which go before the "MM". Meta-X can only give the MM com:uand one argument. If
you want (o give it two, you must type it in using the minibuffer. When TECQO code 1asses prefix argusments,
they don't have (o be numbers; they can also be strings, TECO buffer objects, ete. However, no more abowut

that here.

When | ECO cade passes & string argument, it appears terminated by an Altmaode after the Altimode which
cinds the function name., Theie can be any number of string arguments. In fact, the function can decide at

run time how many string arguments to read. This makes it impossible to compile TECO code!

A5.2.3. Commands and Functions

Actually, every command in FMACS sitnply runs a function. For cx .mple, when you type the command
C-N, it runs the function "R Down Real Line”. You could just as well do C-U 1 M-X ~R Down Real
Line<cr? and get the same effect. C-N can be thought of as a sort of abbreviation. We say that the command
C-N has been "conuected™ to the function “R Down Real Line, ‘The name iy looked up vnce when ihe
command and function are connected, so that it does not have to be looked up again cach time the command
is used. For histerical scasons, the default argument passed to a function wiich is connected to a command
you typed is 1, but the default for MM and for M-X is 0. "T'his is why the C-U 1 was nccessary in the example
above. The documentation for individual EMACS commands usually gives the name of the function which

really implements the command in parentheses afier the command itself.

Just as any funciion can be called directly with M-X, so almost any function can be connceted to a
comaund, This is the basis of customization of EMACS. You can use the function Set Key to do this. ‘To
define C-N, you could type M-X Set Key4~R Down Real Linederd, and then type C-N. 1f you use the
function View File often, you could connect it to the contmand C-X V (not normally defined). You could
even connect it to the command C-M-V,eplacing that command’s nonmal definition, ‘This can be done with

the tlunction Set Key; or you can use an init file to do it permanently. Sce scetion 22.7 [Init], page 120.

) wmon gt ¢

g o

%;
f
%

[FpRipap .

Iixtended (Meta-X) Conunands and Functions

5.24. Subroutines and Built-in Functions

EMACS is composed of a large number of functions, cach with a name. Some of these functions are
conneeted to commands; some are there for you to cail with M-X; some are called by other functions. ‘The
last group are called subroutines. They usually have names starting with "&", as in "& Read Line", the
subroutine which reads a line in the echo arca. Although most subroutines have such names, any function
can be called as a subroutine. FFunctions like ~R Down Real Line have names starting with ~R because you
are not expected to call them directly, cither. “The purpose of the "&™ or "~R" is to get those function names
out of the way of command completion in M-X. M-X allows the command name to be abbreviated if the
abbreviation is unique, and the commands that you arc not interested in might have names that would
interfere and make some uscful abbreviation cease to be unique. The funny characters at the front of the
name prevent this from happening,

Some function names, present as definitions of single-character cotmmands, are known to all the Help
features but don't seem to exist if you try to cail them by name. The names of these functions are not always
defined; they are contained in a Hbrary called BARE which is loaded temporarily by cach documentation
command and then flushed again. "The reason for this is that these functions are really built into 'TECO and
not pirt of EMACS: the EMACS "delinitions™ aren’t necessay for actually using them, and are only there
for the sake of docunentation. I you load BARE permanently, then you can refer to these functions by

name like all others. Sce section 22.2 {Librarics], page 112.

LY

RS E—
R 3

e ‘
e)
F A F O R JUUNERTT

1

P R T T L T L L O A N K A RN (PR e S S

" XN CENTIETERR RN
T } B N T L I BT SR VRS P T

H

. G

MACS Manual for I'1'S Users

I
y

24

e ewer e WY

T“n;':q FaseoEs, P
TR SN

Meosing Up And Down Levels 25

6. Moving Up Aud Down Levels

Subsystems and recursive editing ievels are two states in which you arc tempuorarily doing something other

than editing the visited file as usnal. For example. you might be editing a message that you wish to send, or
looking at a documentation file with INFO.

L o 6 0 L it

o0.1. Subsystems

\ seehsysten is an EMACS function which is an interactive program in its own right: it reads comnumds in
a kanguage of its own, and displays the tesults. You enter a subsystem by tyning an EMACS command which
imokes i Once entered, the subsystem runs until a specilic conmand to exit the subsystem is typed. An
example of an EMACS subsystem is INFO, the documentation reading program. Others are Backtrace and

THEBUG, usod o debugging TECO programs, and RMAH . and BABYL, used for 1cading and cditing mail
filcs.

A i oy sl i s i

'

ko s s

The commands understosd by a subsystem are usually not like EMACS commands, because their purpose

is something other than editing text, For example, INFO commands arce designed for moving around in a

tice-structured documentation file. In EMACS. most commands arc Control or Mcta characters because

printing characters inseit themselves. In most subsystems, there is no insertion of text, so non-Control
non-Meta characters can be the commands.

2 10 it 550 o 1

While you are inside a subsystemn, the maode line usually gives the name of the subsystem (as well as other

information supplicd by the subsystem, such as the filename and node namie in INFO). You can tell that you

T ot et gy g e g

bt st L thh

are inside a subsystem because the mode line does not start with “EMACS”, or with an open bracket ("[™)

which would indicate a recursive editing level. See section 1.1 [Mode Line], page 6.

Because cach subsystem implements its own commands, we cannot guarantee anything about therit,
Howcever, there are conventions for what certain conunands ought to dos:

(KX

C abuits (exits without finishing up)
Backspice Scrolls backward, like M-V in EMACS.
Space Scrolls forward, like C-V in EMACS.

Q Lxits normaily.

X

Begins an extended command. like M-X in EMACS.

Helpor? Prints documentation on the subsystem’s commands.

Not all of these necesearily exist in every subsystem, however,

q

il ‘v|\‘\’ﬂ|;

e

i

]

i

o AR

= S STV V.
= - —— T A T g e T e A

26 EMACS Manual for IS Users

6.2. Recursive Editing Levels

A recursive editing Ievel is a state in which you are inside a command which has given you soine text for

you to edit. The text may or may not be part of the file you are editing. Recursive cditing levels are indicated
in the mode line by square brackets ("[" and "}").

For example. the command M-X Edit Options is for changing the settings of EMACS opticens by cditing a
list of option names and values, You use the same commands as always for making changes in this list; when
you are finished. the changes take affect in your option settings. While you are editing the list of options, the
maode line says "[Edit Options]”. Sce section 22.3 {Variables], page 114,

A recursive editing level differs from a subsystem in that the commands are ordinary EMACS commands

(though a handful may have been changed slightly), whercas a subsystem defines its own command language.

The text you edit inside a recursive editing level depends on the command which invoked the recursive

cditing level. {t could be a list of options and valucs, or a list of tab stop scttings, syntax table settings, a
message 1o he sent, or any text that you might wish to compose.

Sometimes in a 1ccursive editing level you edit text of the file you are visiting, just as at top level. Why
wald this be? Usually tecause i few commands are temporarily changed. For example, Ldit Picture in the
PICTURE library defines commands good for editing a picture made out ¢” characters, then cnters a
recusive editing level. When you exit, the special picturc-cditing commands yo away. Until then, the

brackets in the mode line serve to remind you that, although the text you are editing is your file, all is not
noral. See section 26 [PICTURE], page 151

In any case, if the mode line sz;ys “[..}" you are inside a recursive editing level, and the way to exit (send
the message, redefine the options, get rid of the picture-editing commands, cte)) is with the command
Control-Altmode or C-M-C (*R Exit). See scction 0.3 [Ixiting], page 26. If you change your mind about the
command (you don’t want to send the message, or change your options, otc.) then you should use the
command C-](Abort Recursive idit) to get out. Sce scction 24.1 [Aborting), page 129.

When the text in the mode line is surrounded by parentheses, it means that you are inside a "Minibulfer”.
A winibufter is a special case of the recursive editing level. Like any other, it can be aborted safely with C-.
For tull details on minibuflers, See seetion 23 [Minibufter), page 127.

6.3. Exiting Levels; Exiting EMACS

C-XC-C Exit from EMACS to the superior job.
C-M-C Exit from EMACS or from a recursive editing level.

J T ———rT

VO M i RGO 0 b3 e

1 PR Sl 0t L

ub bk W o

WAL bl ot w9 b ot 88 ootk b ol it e

A 0 b i

Maving Up And Down |.evels

p

The general EMACS command to exit is C-M-C (*R Exit). This command is used 10 exit from a recursive
editing level back to the top level of EMACS, and to exit from EMACS at top level back to HACTRN. If

your keyboard docs not have a Meta key, you must type this connand by means of a bit prefix character, as

C-C C-C or as Altmode C-C. Note carcfully the difference between exiting « recursive editing level and

. TV Y RTINS §

. dborting it: exiting allows the command which invoked the recursive editing level to finish its job with the text
as you have cdited it, whercas aborting cancels whatever the command was going to do. Sce section 24.1
[Aborting], page 129.

We cannot say in general how to exit a subsystem, since cach subsystem defines its own commangd

Prr—

language. but the convention is to use the character "Q".

You wan eat from EMACS back to the superior job, usually HACTRN, at any time, cven within a

AN N e

recursive editing level, with the command C-X C-C (“R Retwrn to Supetior). If this is used while you are
inside « tecursne cdiiing level, then when EMACS is re-enteted you will still be inside the recursive editing

level.

Exiting EMACS doces not normally save the visited file, because it is not the case that users exit EMACS
only when they are "finished editing”. 1 you want the file saved, you must use C-X C-S. Exiting does cause

an auto save ifauto save mode s in use.

Lxiting from EMACS runs the function & Exit EMACS, which executes the value of the variable Exit
Hook, if it is defined.

[

LB N

b ¢ b 1 ol bl T T e

SRR e e

g o S
ik

A

EMACS Manual for I'l'S Users

}

4 N
AT L

[ORSRTEY

L

AR

i

e L L]

e

Sclf-Documentation Commands

7. Scif-Documentation Commands

EMACS provides extensive self-documentation features which revolve around a single character, called
the Help character. At any time while using EMACS, you can type the Help character to ask for help. How
o type the Help character depends on the terminal you are using. but aside from that the same character
always ducs the trick. 1f your keyboard has a key labeled Help (above the H), type that key (together with the
Top key). Otherwise the way you type the Help character is actually C- _ (Control-Underscore) followed by
an (this is two characters to type. but let’s not worry about that). Whatever it is you have to type, to
EMACS it is just the Help character. On some terminals just figuring out how to type a Control-Underscore
i> hard! "Typing Underscore and adding the Control key is what is supposced to work, but on some terminals it
docs not. Sometimes Control- Shift-Q warks. On VI-190 terminals, Control-/ and Control-? send a

Control-_ character.

It you type Help while you are using a subsystem such as INFO, it will give you a list of the commands of

that subsystem.

1f you type Help in the middle of a multi-character command, it will often tell you about what sort of thing
you should type next. Por example, if youi type M-X and then FHelp, it will telf you about M-X and how to
type the same of the command. If you finish the function name and the Altimaode and then type Help, it will
tell you about the function you have specified so you can know what arguments it needs. 1 you type C-X and

then type Help. it will tell you about the C-X commands.

But normally, when it's time for you to start typing a new commuand, Help offers you several options for
asking about what commands there are and what they do. It prompts with "Duoc (2 for help):” at the bottom
of the screen, and you should type a character to say what kind of help you want. You could type Help or ™7

at this point to find out what options are available. The ones you are most likely to need are described here.

The most basic Help options are Help C and Help . You can use them to ask what a particular
command docs. Help Cis for character commands; tyne the command you want to know about after the
Help and the "C" ("C" stands for Character), Thas, lelp C M-I or Help C Altmode I¥ tells you about the
M-I command. Help D is for asking about functions (extended commands); type the name of the function
and a Rerwn, Thas, Help 1 isp Mode<er) tells you about M-X Lisp Made. "D stands for *Describe”,

since Help D actually uses the function Describe to do the work.

A more complicated sort of question to ask is, “"what are the commands for working with files"? For this,
you can type Help A, followed by the siring “file” and a Return. It prints a list of all the functions that have
"file" anywhere in their names, including Save All Files, “R Save File, Append to File, ctc. 1f some of the

functions arc connccted to commands, it will tell you. For example, it would say that you can iaveke

30 ISMACS Manual for 'S Users

~R Save File by typing C-X C-S. "A" stands for "Apropos”, since Help A actually uses the-function Apropos
to do the substring matching. Help A does not list internal functions. only those the nonprogrammer is likcly
to use. If you want subroutines to be listed as well, you must call Apropos yoursclf.

Because Apropos looks only for functions whose names contain the string which you specify, you must use
ingenuity in choosing substrings. If you are looking for commands for killing backwards and Hclp A Kill

Backwards docsn’t reveal any, don’t give up. Try just Kill, or just Backwards, or just Back. Be persistent,
Pretend vou are playing Adventure.

If you aren’t surc what characters you accidentally typed to produce surprising results, you can use H«lp 1.

to find out ("1.” stands for "What | ossuge™). I you sce commands that you don’t know, you can use Help C

1o find out what they did.

If a command doesn’t do what you thought you knew it should do. you can ask to sec whether it has

changed recently. 1lelp N print. out the filc called EMACS;EMACS NEWS which is an archive of
announcements of changes to EMACS.

T'o find out about the other Help eptions, type Help Help. “That is, when the first Help asks for an option,
type Help to ask what is available.

Finally, you should know about the decumentation files tor EMACS, which are EMACS;iMACS
GUIDE and EMACS:EMACS CHART. EMACS CUIDL is a version of the manual formatted to be printed

out on a terminal or fine printer. EMACS CHAR'T has a brief description of all the commands, and is good
to post on the wall near your terminal.

=

E]
=
=
=
=
=3
=
=
=
=
=
B
N

i

B

bR

ke 0 Dy i A, o 0 5 G |

e b bl i e i s o s
SN Dubithad A

g

i

‘T'he Mark and the Region

Lra 1 DA AR A I"NWH?-#WMWMH

8. The Mark and the Region

In general, a command which processes an arbitrary part of the buffer must know where to start and where
to stop. In EMACS, such commands start at point and end at a place called the "mark”. This range of text is

called "the region”. Here are some commands for sctting the mark:

c@ Set the mark where point is.

C-Space ‘The same.

C-XC-X Interchange mark and point.

M-@ Set mank after end of next word.

C-M-@ Setmauk after end of next I isp s-expression.
€< Sctnnnk at beginning of buffer.

C> Setmark at end of bufler.

M-I Put region around current paragraph.
C-M-H Put segion around current Lisp defun.
C-XH Put region around cntire buffer.

C-XC-p Put region around current page.
i3 p

For cxample, if you wish to comert part of the buffer to all upper-case. you can use the C-X C-U
command. which operates on the text in the region. You can first go to the beginning of the text to be
capitalized. put the mark there, move to the end, and then type C-X C-U. Or. you can st the mark at the end
of the text. move o the heginning, and then type C-X C-U. C-X C-U runs the function *R Uppcrcasé

Region, whuose name signifies that the region, or everything between point and the mark, is to be capitalized.

The nrost common way o set the mark is with the C-@ command or the C-Space command (*R Set/Pop

Mark). They set the mark where point is. ‘Then you can mos e point away, leaving the mark behind.

Itisn’t actually possible o type C-Space on non-Meta kevboards. Yet on many terminals the command
appears to work anyway! This is because trying to type a Control-Space on those terminals actually sends the
character C-@. which mcans the same thing as C-Space. A few keyboards just sead a Space. If you have one

of them. you suffer, or customize your EMACS,

Since terminals have only once cursor, there is no way for EMACS to show you where the mark is located. :
You have to remember. The usual solution to this problem is to sct the mark and then use it soon, before you

¢ forget where itis. But you can sce where the mark is with the command C-X C-X (*R Iixchange Point and

Mark) which puts the mark where point was and point where the mark was. Thus, the previous location of
the mark is shown, but the region specified is not changed. C-X C-X is also uscful when you are satisficd with
the location of point but want to move the other end of the region: do C-X C-X to put point at that end and
then you can adjust it. The end of the region which is at point can be moved, while the end which is at the

mark stays fixed.

EMACS Manuat for I'1'S Users

If you insert or delete before the mark, the mark does not stay with the characters it was between. If the
buffer contains "1F00 BAR" and the mark is before the "B”, then if you delete the "F" the mark will be
before the “A". ‘This is an-unfortunate result of the simple way the mark is impiemented. It is best not to

delete or insert at places above the mark until you are finished using it and don’t care where it drifis to.

8.1. Commands to Mark Textual Objects

There are commands for placing the mark on the other side of a certain object such as a word or a list,
without hanving to move there first. M-@ (R Mark Word) puts the mark at the cnd of the next word, while
C-M-@ (~R Mark Scxp) puts it at the end of the next s-expression. - (“R Mark End) puts the mark at the
end of the buffer, while C-< ("R Mark Beginning) puts it at the beginning. “These characters allow you

sine a little typing. sometimes.

Other commands set buth point and mark, to delimit an object in the buffer. M-H ("R Mark Paragraph)
puts point at the beginning of the paragraph it was inside of (or before), and puts the mark at the end. M-H
does all thats necessary if you wish to indent, case-convert, or kill a whole paragraph. C-M-H (*R Mark
Defun) similarly puts point before and the mark afier the current or nest defun. C-X C-P (*R Mark Page)
puts point before the current page (or the next or previous, according te the argument), and mark at the end.
The mark goes after the terminating page delimiter (1o include it), while point goes after the preceding page
delimiter (to exclude it). Finally, C-X H (R Mark Whole Bufler) makes the region the entire buffer by

putting point at the beginning and the mark at the end.

N PRI T L IR RN L L T TSR]

&2, The Ring of Marks

\side from delimiting the region, the mark is also useful for remembering a spot that you may want to go

back to. To muke this feature more useful, EMACS remembers 16 previous locations of the mark. Most

a0k

commands that set the mark push the old mark ontc this stack. To returmn to a marked location, use

U} i

C-U C-¢* (or C-U C-Space). This moves point to where the mark was, and restores the mark from the stack

of former n-arks. So repeated use of this conmimand moves point to all of the eld marks on the stack, one by

one. Since the stack is actually a ring, cnough uses of C-U C-(bring point back o whete it was originally.

e SR U]

Insertion and dcletion can cause the saved marks to drift, but they are still good for this purpose because they

are approximately right.

Some commiands whose primury purpose is to move point a great distance take advantage of the stack of -

-
o -

maiks to give you a wa (o undo the command. The best examiple is M-<, which moves to the beginning of

the bufler. 1t sets the mark first, so that you can use C-U C-@ or C-X C-X to go back to where you were.
Scarches sometimes sct the mark; it depends on how far they move. Because of this uncertainty, scarches

‘The Mark and the Region

3

type out "~@" if they set the mark. ‘The nonnal situation is that scarches leave the mark behind if they move

at least 500 characters. but you can change that value since it is kept in the variable Auto Push Point Option.
g P |

By sctting it to 0, you can make all scarches sct the mark. By setting it to a very Targe number such as tcn

million. you can prevent all scarches from setting the mark. ‘The string to be typed out when this option docs
its thing is kept in the variable Auto Push Point Notification.

=

ka1

§ bt § ¥

Wl b e s R O o

s o 0§

shi 1t itk b it ol

s Manual fo I'1'S Users

na e
”.1"1‘\’

MY DA

vad

L

L g e L

R

i

[XTRRET]

sl

£

P

TR

@

Killing and Moving ‘l'ext

DO Bt e,
* o,

9. Killing and Moving Text

W P PR

‘The comimonest way of moving or copying text with EMACS is to kill it, and get it back again in one or
more places. 'This is very safc because the last several pieces of killed text are all remembered, and it is
: versatile, because the many commands for killing syntactic units can also be used for moving those units.

"There are also other ways ol moving text for special purposcs.

* 9.1. Deletion and Killing

Most commands which crase text from the buffer save it so that you can get it back if you change your
mind. or move or copy it to other paits of the buffer. These commands are known as "kill" commands. The
rest of ths commands that crase text do not save it; they are known as "delete” commands. ‘The delete
cotaands include C-1) and Rubout, which act on single characters, and those connnands that delete only
spaces or line separators, Commands that can destroy significant amounts of nontrivial data generally kill,
The commands’ names and individual descriptions use the words "kill” and "delete” to say which they do. IF
you do a Kill command by mistake, you can use the Undo command to undo it (See section 24.3 {Undol,

page 132.).

i c-D Delete next character.

‘ Rubout DNelete previous character,

! M-\ Delete spaces and tabs around point, ;

. C-XC-0 Delete blank lines around the current line,

M-~ Join two lines by deleting the CRILF and any indentation. !

; C-K Kill rest of line or one or moie lines.
c-w Kill region (from point to the mark). ;
M- Kitl a word. !
M-Rubout Kill a word backwards.
C-X Rubout Kill back to beginning of sentence. %
M-K Kill to end of sentence. HE
C-M-K Kill s-cxpression.

C-M-Rubout Kill s-expression backwards.

9.1.1. Deletion

"I'he most basic delete commands are C-D and Rubout. C-D deletes the character after the cursor - the one
the cursor is "on top of" or "underncath”. "The cursor doesn’t move. Rubout deletes the character before the
cursor, and moves the cuisor back. Line separators act like single characters when deleted. Actually, C-D

and Rubout aren’t always delete commands; if you give an argument, they kil instcad. This prevents you

from losing a great deal of text by typing a large argument to a C-I or Rubout.

£

E 36 I:MACS Manual for 1S Uscrs

i -
!

i Tie other delete comimands are those which delete only formatting characters: spaces, tabs and line

separatos. M-\ (*R Delete Horizontal Space) deletes all the spaces and tab charactets before and after
point. C-X C-O (*R Delete Blank Lines) deletes all blank lines after the current line, and if the carrent line
is blank deletes all blank lincs preceding the cuirent line as well (leaving one blank line, the current line).
M-~ (“R Delete Indentation) joins the current line and the previous line, or the current line and the next line
if given an argument. Sce section 11.3 [Indentation), page 46.

A function ~R Delete Region used to exist, but it was too dangerous. When you want to delete a large
amount of text without saving a copy of it (perhaps because it is very big). you can set point and mark around

the text and then type M-¢ M R K ¢ ¢. (This is a use of the minibuffer. Sce scction 23 [Minibuffer],
page 127.).

9.1.2. Killing by Lines

The simplest kill command is the C-K command (*R Kill Linc). If given at the beginning of a line, it kills

ali the text on the line, leaving it blank. 1fgiven on a blank line, the blank linc disuppears. As a consequence,

i you go to the front of a non-blank line and type two C-K's, the line disappears completely.

More gencrally, C-K kills from point up to the end of the line, unless it is al the end of a line. In that case

it kills the line separator following the line, thus merging the next line into the current one. Invisible spaces

I
e

‘
gy

i
i and tabs at the end of the line are ignored when deciding which case applics, so if point appeats to be at the
§

end of the line, you can be sure the fine separator will be killed.

C-K with an argument of zero kills ali the text before point ¢i the curreat line,

IFC-K is given a positive argument, it kills that many lines, and the separators that follow them (however,

teat on the current tine before point is spared). With a negative argument, -5 for example, all text before
point on the current line, and all of the five picceding lines, are killed.

AR LA AR Ay O 3 2 204

9.1.5. Other Kill Commands

A kill command which is very general is C-W (*R Kill Region), which kills everything between point and

the mark. With this command, you can kill any contiguous characters, if you set the mark at one end of them

and go to the other end, first.
=y
Other syatactic units can be killed: vords, with M-Rubout and M-1) (Sce section 1.1 [Words), page 43.); ~ 7

sexpressions, with C-M-Rubout zad C-M-K (Sce section 20.60.1 [S-expressions], page 94.); sentences, with
C-X Rubout and M-K (Sce sertton 112 [Sentences), page 44.).

£l
2
E
]

e AT

Killing and Moving Text

W1 e s, AT R M
A
o
s

.
|
)
4
d
3
#
{
¥
|
)

9.2. Un-Killing

Un-killing is getting back text which was killed. The usual way to move or copy text is to kill it and then
un-kill it onc or more times.

C-Y Yank (re-insert) last killed text.

M-Y Replace re-inserted killed text with the previously killed text.
M-W Save region as fast hilled text without killing.
C-M-W Append next kill to last batch of killed text.

Killed text is pushed onto a ring buffer that remembers the fast 8 blocks of text that were killed. (Why itis
called a “ring buffer” will be explained below). ‘The command C-Y (“R Un-kill) reinserts the text of the
most recent kill. 1t feaves the cutsor at the end of the text, and puts the matk at the beginning. ‘T'hus, a single
C-W undoces the C-Y (M-X Undo also doces so). C-U C-Y leaves the cursor in front of the text, and the mark
after. This is only if the argument is specified with just a C-U, preciscly. Any other sort of argument,
including C-U and digits, hus an ¢ffect described below.

Il you wish to copy a block of text, you might want to use M-W (*R Copy Region), which copics the
region into the kill ring without removing it from the buffer. This is approximately equivalent to C-W
followed by C-Y, except that M-W does not mark the buffer as "changed” and does not temporarily change
the screen. Note that there is only one il ring, and switching bufiers or files has no cffect on it Afler

visiting a new file, whatever was last killed in the previous file is still on top of the kill ring.

9.2.1. Appending Kills

Normally, cach kill command pushes a nevs block onto the kill ring. However, two or more kill commands

in a row combine their text into a single entry on the ring, so that a single C-Y command gets it ail back as it

was before it was killed. (Thus we join television in leading people to kill thoughtlessly). #f a kili command is

2 gt o R o s 1 e

* o
A e s s sl e 2 bt o

separated from the last kill command by other commands, it starts a new cntry on the kill ring, uniess you tell

it not to by saying C-M-W (*R Append Next Kill) in front of it. The C-M-W tells the following command, if

VONNeNES L ¢ we

it is a kit command, to append the text it kills to the last killed text, instcad of pushing a new entry. With

C-M-W, you can kill several separated picces of text and accumulate them to be yanked back in one place.

o,

9.2.2. Un-killing Earlier Kills

AR

iy

To recover text that was killed some time ago (that is, not the most recent victim), you need the Meta-Y
(*R Un-kill Pop) command. "The M-Y command should be used only after a C-Y command or another M-Y.
1t takes the un-killed text and replaces it with the text from an carlier kill,

= IS Ty s

38 EMACS Manual for IS Users

You can think of all the last few kills as living in a ring. Afler a C-Y command, the text at the front of the
ring is also present in the buffer. M-Y "rotates” the ring, bringing the previous string of teat to the front, and
this text replaces the other text in the buffer as well. Enough M-Y commands can rotate any part of the ring
to the front, so you can get at any killed text as long as it is recent cnou'gh to be still in the ring. Eventually the
ring rotates all the way around and the most recent killed text comes to the front (and into the buffer) again,
M-Y with & ncgative argument rotates the ring backwards. If the region doesn’t match the text at the front of
the ring, M-Y is not allowed (its definition doesn’t make sense in that case).

In any casc, when the text you are louking for is brought into the buffer, you can stop doing M-Y’s and it :
will stay there, It's really just a copy of what's at the front of the ring, so cditing it docs not change what's in

the ring. And the ring, once rotated, stays rotated, so that doing another C-Y gets another copy of what you 3
rotated to the front with M-Y. :

If you change vour mind about un-killing, a C-W or M-X Undo gets rid of the un-killed text at any point,
after any number of M-Y's. C-W pushes the text onto the ring again. M-X Undo does not.

If you know how many M-Y's it would take o find the text you want, then there is an alternative. C-Y

0 0 A T L

with an argument greater than one restores the text the specified number of entrics down on the ring. Thus,

C-U 2 C-Y is gets the next to the last block of killed text. 1 differs from C-Y M-Y in that C-U 2 C-Y docs
not permanently rotate e ring.

i s el

Al PN K 0

A way of vicwing the contents of the kill ring is

ol P g

M-X View Q-register¢. .K<cr>

Sk ¢

You must add one to the indices listed by this command, to get the argument to use with C-Y to yank any
particular string.

wivar b

o e, gl bbb o

9.3. Other Ways of Copying Text

Usually we copy or move text by killing it and un-killing it, but there arc other ways that arc useful for

copying vne block of text in many places, or for copying many scattered blocks of textinto one place.

9.3.1. Accumulating Text

You can accumulate blocks of text froni scattered locadions cither into a bufler or into a file if you like.

€
‘To append them into a buffer, use the command C-X A<buffernamed<er> (*R Append w Bulfer), which

inserts a copy of the region into the specified buffer at the location of point in that buffer. If there is no

ulfer with the name you specify, one is created, empty. If you append text into a buffer which is visiting a

é
=
=3
E
£
£
£
E
S
ES

Killing and Moving Text

file, the copicd text goes into the middle of the text of the file.

Point in that bufTer is left at the end of the copiced text, so successive uses of C-X A accumulate the text in
the specified buffer in the same order s they were copied. If C-X A is given an argument, point in the other

bufter is left before the copied text, so successive uses of C-X A add text in reverse order.,

You can retricve the accumulated text from that buffer with M-X Insert Buffer¢<buffernamed<cr>. This
inserts a copy of the text in that buffer into the selected buffer. You can also select the other buffer for
cditing. See scction 14 [Bulteis), page 67, for background information on buffers.

Strictly speaking, C-X A does not always append o the text alrcady in the buffer. But if it is used on a
. ~ . .
buffer which starts out empty, it does keep appending to the end.

Fo accumulate text into a file, use the command M-X Append to Filed<filenumed<crd. It adds the iext of
the region to the end of the specified file. M-X Prepend to File adds the text to the beginning of the file

instead. ‘The file is changed immediately on disk. If you wish to insert the text into a copy of the file in an
LEMACS buffer, you must append to that buffer instead.

9.3.2. Copying Text Many Times
When you want Lo insert a copy of the same picce of text frequently, the kill ring becomes impractical,
since the text moves down on the ting as you edit, and will be in an unpredictable place on the ring when you

need it again, For this case, you can use the commands C-X X (“R Put Q-register) and C-X G ("R Get
(Q-1egister) to move the text.

C-X X<g> stores a copy of the text of the region in a place called g-register <@>. <q> can be aletter or a
number. This gives 36 places in which you can store a picce of text. With an argument, C-X X deletes the
text as well. C-X G<q> inserts in the bufferthe text from g-register <@>. Noimally it leaves point before the

text and places the mark after, but with a numeric argument it puts point after the text and the mark before.

‘The g-registers are important temporary variables in TECO programming,” but you don’t have to

understand them, only to know that what you save with C-X X A is what you will get with C-X G A,

Do not to use g-registers M and R in this way, il you are going to use the TECO commands MM and MR,

_

il
it bbbt <

R

b
R

b

=
:
o =

wal for I'1'S Users

MA CS M:

.
I

At AN B A BN B 20 30w

© BN O he e b o

Scarching

10. Scarching

Like other editors, EMACS has commands for scarching for an occurrence of a string. Ihe semch
command is unusual in that it is "incremental™; it begins to scarch before you have finished typing the search
string. As you type in the scarch string, EMACS shows you where it would be found. When you have typed
enough characters to identify the place you want, vou can stop,

CS Scarch forward.

C-R Search backward.
C-S¢ C-W Ward scarch, ignoring whitespace.

The command to search is C-S (R Incremental Search). C-S reads in characters and positions the cursor
at the first occurrence of the characters that you have typed. If you type C-S and then IS, the cursor moves
right after the fust "F”. Type an "0, and sce the cursor move to after the first "1FO". After another “O”, the

cursor is after the first “"FOO™ after the place where you started the scarch. At the same time, the "1FOO™ has
echoed at the bottom of the screen.

IT you type a mistaken character, you can rub it out. Afier the 1FOQ, typing a rubout makes the “0”
disappear {rom the bottem of the screen, leaving only "FO”. The cursor moves back to the "1FO". Rubbing

out the "O™ and "I moves the cursor back to where you started the scarch.

When vou are satisfied with the place you have reached, you can type an Alunode, which staps scarching,
leaving the cursor where the scarch brought it. Also, any command not specially meaningful in scarches stops
the scarching and is then exccuted. Thus, typing C-A would cxit the scarch and then move to the beginning
of the line. Altmade is necessary only if the next command you want to type is a printing character, Rubout.

Altmode or another search command, since those are the characters that would not exit the scarch.

Somctimes you scarch for "FOO" and find it, but not the one you expected to find. There was a second
OO that you forgot about, before the one you were looking for. Then type another C-8 and the cursor will
find the riext FOQ. “This can be done any number oftimes. 1f you overshoot. you can rub out the C-S's. You

can also repeat the scarch after exiting it. if the first thing you type after entering another scarch (when the
argument is sull ecmpty) isa C-S.

IT your string is not found at all, the echo arca says "Failing 1-Scarch™. “The cursor is alter the place where
FMACS found as nuch of your stiing as it could. Thus, if you seich for FOOT, and there is no FOOT, you
might see the cursor alter the FOO in FOOL . At this point there are several things you can do. W your string
wirs mistyped, you can rub some of it out and coneetit. 1Fyou ike the place you have found, you can type
Altmaode or some other FMACS command to "accept what the search offered”. Or you can type C-G, which

throws away the characters that could not be found (the "I in "FOO'T™), leaving those that were found (the

1 e yam v s il

g e

i T 12

'y sl W

4 s

» ’ .
s rtati b bl 0 ka1 B

i b b b bl

lwﬁ\‘h

i

EMACS Manual for 'S Users

“1F00" in "FOO'T™). A second C-G at that point undoes the search entircly.

‘The C-G "quit” command docs special things during scarches; just what, depends on the status of the
search. If the scarch has found what you specified and is waiting for input, C-G canccls the entire search.
“I'he cursor moves back to where you started the search. If C-G is typed while the search is actually searching
for something or updating the display, or after scarch failed to find some of your input (having scarched all
the way to the end of the filc), then only the characters whi- i have not been found are discarded. Having
discarded them, the scarch is now successful and waiting for more input. so a sccond C-G will cancel the

entire scarch. Make sure you wait for the first C-G to ding the bell before typing the second one; if typed too
soon, the second C G may he confused with the first and effectively lost.

You can also type C-R at any time to start scarching backwards. 1F a scarch fails because the place you
started was too late in the file, you should do this. Repeated C-R's keep looking for iore occurrences
backwards. A C-S starts going forwards again. C-R’s can be rubbed out just like anything clse. 1f you know
that you, want to scarch backwards. you can use C-R instead of C-S to stast the scarch, because C-R is also a
compuand (*R Reverse Incremental Scarch) to seach backward., Note to all customizers: all this command

docs iy call the current definition of “R - Incremental Scarch with a negative argument.

A non-incremental scarch is also available. ‘Type Altmode right after the C-S to get it. Do M-X
Describe¢~R String Scarch<cr> for details. Some people who prefer non-incremental scarches put that
function on Meta-S, and “R Character Scarch (do M-X Describe¢ for details) on C-S. It can do one uscful
thing which incremental scarch cannot: scarch for words regardless of where the line breaks.

Word scarch searches for a sequence of words without regard to how the words are separated. More
precisely, you type a string of many words, using single spaces to separate them. and the string can be found
cven if there are multiple spaces or line separators botween the words. Other punctuation such as commas or
periods must match exactly. ‘This is uselul in conjunction with documents formatted by text justifiers. If you

cdit while looking at the printed, formatted version, you can’t tell where the line breaks are in the source file.
With word scarch. you can scarch without having to know.

Word scarch is a special case of non-incremental scarch and is invoked with C-S Altmode C-W. 'This is

followed by the scarch string, which must always be terminated with an Altmode. Scarching doces not start
until the final Altmode is typed.

i

"

S,

i

| !?w

=

N s v o

it

o R I A

RETIRIT

~

Fa

e e

e e el Ty

Commands for 1inglish "Fext

11. Commands for English Text

EMACS cnables you o manipulate words, sentences, or paragraphs of his text. In addition, there are

commands to fill text, and comert case. For text-justificr input files, there are commands that may help
nrnipulate font change commands and underlining,

Iiditing files of text in a human language ought to be done using Text mode rather than Fundamental
mode. Imvoke M-X Text Maode 1o enter Text mode. Sce section 20 {Major Model]. page 87. M-X ‘Text Mode
causes Tab to run the function ~R "Tab to Tab Stop, which altows you to set any tab stops with M-X Edit Tab
Stups (See section 11.3 [Indentaion], page 40.). Features concerned with comments in programs arc turned
off exeept when eaplicitly invoked. Aatomatic display of pienthesis matching is turned off, which is what

must people want, Finally, the syntax table is changed so that pesiods are not considered part of a word,
while apostrophes, hackspaces and underlines are.

H.1. Word Commeands

iPMACS has commands for moving over or operating on words. By convention, they are all Mela-

characters.
M-F Move Forward over a word.
M-B Move Backward over & word.
M-D Kill up to the end of a word.
M-Rubout Kill back to the beginning of a word.
M-@ Mark the end of the next word.
M-T

Transpose two words; drag a word forward or backward across other words

Notice how these commands form a group that parallels the character based commands C-F, C-B, C-D,

C-1and Rubout. M-@ is iclated to C-@.

The commands Meta-l® (R Forward. Word) and Mcta-B ("R Backward Word) move forward and
backward over words. They are thus analogous to Control-l- and Control-B, which move over single

characters. 1ike their Control- analogues, Meta-1¥ and Meta-13 move several words if given an argumoend, and

can be made to go in the apposite direction with a negative argument. Forward mation staps right afier the
last Ietter of the word, while backward motion stops right before the first Ietter.

It is casy to kill a word at a time. Mceta-D (*R Forward Kill Word) kills the word after point. o be
meeise, it kills everytiving from point to the place Mcta-l- would move to. Thus, if pointis in the middlc of a
wortd, only the part after point is killed. 1fsome punctuation comes after point and before the next word, it is

killed along with the word. 1 you wish to kill only the next word but not the punctuation, simply do Meta-F

DA wome W

S TR TS AR
vt g s AL

" g it o s i I s b iy
O e bt b M o

to get the end, and Kill the word backwards with Meta-Rubout. Meta-1) takes aguments just like Meta-F.

Meta-Rubout (*R Backward Kill Word) kills the word before point. It kills everything from puint back to
where Meta-B would move . If point is after the space in "FOO, BAR", "FFOO, " is killed. In such a
situation, to avoid killing the comma and space, do @ Meta-B and a Meta-D instead of a Mcta-Rubout.

Meta-T (*R Transpose Words) moves the cursor forward cver a word, dragging the word preceding or
containing the cwrsor forward as well. A numeric argument serves as a repeat count. A negative argument
undocs the effect of a positive argument; it drags the word behind the cursor backward over a word. An
argument of zero, instead of duing nothing, transposcs the word at point with the word at mark. In any case,
the delimiter characters between the words do not move. For example, “IFOO, BAR™ transposcs into “BAR,
100" rather than "BAR FOQ,".

To operate on the next n words with an operation which applies between point and mark, you can either
sct the mark at point and then move over the words, or you can use the command Meta-@ ("R Mark Word)
whith does not move point. but sets the mark where Meta-FF would move to. ‘They can be given arguments
just like Meta-l°. ‘The case conversion operations have alternative forms that apply to words, since they are

patticularly useful that way.

Note that if you are in Atont Word mode and in | isp mode, all the word commands icgard an entire Lisp

atom as a single word. See section 22.1 [Minor Mades], page 111

The word commands’ understanding of syntax is completely controlled by the syntax table. Any character

can, for example. be declared to be a word delimiter. Sce section 22.4 [Syntax], page 115.

11.2. Sentence and Paragraph Commands

‘The EMACS commands for manipulating sentences and paragsaphs are all Meta- commands, so as to
resemble the word-handling commands.
M-A Maove back to the beginning of the sentence.

M-E Move forward to the end of the sentence.
M-K Kill this or next sentence.

M-| Move back to previous paragraph beginaing.

M-} Move forward to next paragraph end,

M-TT Put point and mak around this paragraph (around the following one, if between
paragrdaphs).

C-X Rubout
Kill back to beginning of sentence,

EMACS Manual for I't'S Users

e

t
$
l
i
]

udan o It | L

o b 4 AU R

i oo 4 Fd 0t b B s o Lo s

' e I bt

D

A

b bt

[T
b 0 vk

i b

s ot 1

Commands for English "Fext 45

11.2.1. Sentences

The commands Meta-A and Mcta-lE ("R Backward Sentence and ~R Forward Sentence) move w the
heginning and cend of the current sentence, respectively. ‘They were chosen to resemble Control-A and
Centrol-I3, wirich move to the beginning and end of a linc. but unlike those Contrel characters Mcta-A and
Mcta-E if repeated move over several sentences. EMACS considers a sentence to end wherever there isa ™."

LY
wan e

or "1" followed by the end of a line or two spaces, with any number of *)™'s, “J™'s. "™"s, or ™ s allowed in

between. Neither M-A nor M-I moves past the CRLF or spaces which delimit the sentence.

ARG

L

Just as C-A and C F hane a kil command. C-K, to go with them. so M-A and M-1: have a conesponding
Lill commands M-K (~R Kill Sentence) which kills fron point to the end of the sentence. With minus once as

an argument it kills back to the beginning of the sentence. Targer arguments serve as & repeat count.
Thete is a speciad comnumd, C-X Rubout (*R Backward Kill Sentence) for killing back (o the beginning

of a sentence. because this is uselul when you change your mind in the middic of composing text,

11.2.2. Paragraphs

‘There are similar comnumds for moving over paragraphs. Met-] ("R Backward Paragraph) moves i the
beginning of the current or previous paragiaph, while Meta-] ("R Forward Paragiaph) maoves to the end of

the current or next paragraph. Blank lines and text justifier comnmand lines separate paagraphs aad are not

.o

part of any paragraph. Also. an indented fine starts a new paragraph.

; In major modes for programs {as oppused to Text mode). paragraphs are determined only by blank lines,
: Ihis makes the paragraph commands continue to be uscful even though there are no paragraphs per se.
When there is a fill prefix, then paragraphs are delimited by all tines which don’t start with the fill prefix.
S When you wish to operate on a paragiaph, you can use the corunand Meta-t (*R Mark Paragraph) to

T prepare. Fhis command puts point at the beginning and mark at the end ef the paragraph point was in.
= Betore setting the new nuark at the end. a ik is sct at the old location o point; this allows you to undo a
mistaken Meta-tl with two C-U C-@7s. If point is between paragraphs (in a run of bk lines, or at a
houndary). the paragraph following point is surrounded by point and mark. "Thus, for example, Meta-11 C-WY

kills the paragraph asound or after point.

Onc way to make an “invisible™ paragraph boundary that does not show if the diie is printed is to put
space-backspace at the front of a line. ‘The space wakes the line appear (to the BEMACS paragraph

conmmands) to be indented, whicih usually means that it starts a paragraph.

K it o

| o o et o o S

i D

g
H
H
g

4o EMACS Manuat for I'T'S Users

“The variable Paragraph Delimiter should be a 'v1ECO search string (Scc section 19.3 [FECO scarch strings].
page 85.) composed of various characters scparated by tO’s. A line whose beginning matches the scarch
string i< cither the beginning of a paragiaph or a text justificr command line part of no paragraph. If the line
begins with period. singlequote, -, “\" or "@", it can be a text justifier command line: otherwise, it can be
the beginning of a paragraph; but it cannot be cither one unless Paragraph Delimiter is set up to recognize it.
Thus, ".+Q ™ as the Paragraph Delimiter string means that lines starting with spaces start paragraphs, lines

stuting with periods are teat justifier commands, and all other nonblank lines are nothing special.

11.3. Indentation Commands for Text

Tab Indents "appropriately” in a mode-dependent fashion.
M-Tub Inserts a tab character.

| incleed Is the same as Return and Fab.

M-~ Undocs a Lincleed. Merges two lincs.

M-M Mores to the tine’s first nonblank character.

M-1 Indent to tab stop. In Text mode, Tab duces this also.
C-M-\ Indent several lines to same column,

C-XTab Shift block of lines rigidly right or left.

The way to request indentation is with the Tab commund. s precise cffect depends on the major mode.
In Text mode. it indents to the next tab stop. You can set the tab stops with Edit Tab Stops (sce below). |:

you just want 1o insert a tab character in the buffer, you can use M-Tab.

IFor Faglish text. usually only the first line of a paragraph should be indented. So, in Text mode, new hnes
created by Auto Fill mode are not indented. This is brought about by sctting the variable Space fndent Flag
to sero. This way, Auto Fill can avoid indenting without denying you the use of Tab to indent. But
sometimes you wait to have an indented paragraph. in such cases, use M-X Edit indented ‘Text, which enters
a submede in which Tab and Auto Iill indent cach line under the previous line, and only blank lines delimit

paragraphs. Alternatively, you can specify a fill prefix (sce below).

To undo a linc-break, whether done manualiy or by Auto Fill, use the Meta-~ (*R Delete Indentation)
command o delete the indentation at the front of the cunient line, and the line boundary as well. They are
replaced by a single space, or by no space if before a ™) or after a "(", or at the beginning of a line. "Fo delete
just the indentation of a linc, go to the beginning of the line and use Meta-\ {*R Delete Horizontal Space),
which deletes all spaces and tabs around the cursor.

To fasert an indented line befure the cusrent one, do C-A, C-0, and then Tab. “To make an indented lianc
after the current one, use C-E Linefeed.

To move over the indentation on a line, do Mcta-M or C-M-M {*R Back to Indentation). ‘These

Comniands tor English Fext

commands, given anywhere on a line, position the cursor at the first nonblank character on the line.

There are also commands for changing the indentation of scveral lines at once.

(“R Indent Region) gives cach line whaose first character is between 1

Control-Mcta-\

. 't and mark the "usual” indentation
(as determined by Tab), With a numeric argument, it gives cach line precisely that much indentation, C-X

Tab (R Indent Rigidly) moves all of the lines in the region right by its argument (left. for negative
argementsy.

Usually. EMACS uses both tabs and spaces to indent. 1f you don’t want that, you can use M-X Indent
Tabs Mode to turn the use of tabs on or off. To convert all tubs in a file to spaces, you can ase M-X Untabify,
whose wrgument is the number of positions to assume between tab stops (default is 8). M-X Tabify performs
the opposite tasstormation., replacing spaces with tabs whenever possible. but only il there are at least three

ol them su as not tw vi- ure ends of sentences. The visual appeirance of the text should never be changed by
Tubify or Untabify.

11.3.1. Tab Stops

FFor typing in tables, you can usc Text mouc’s delinition of Tab, ~R “Tab to Tab Stop, which may be givea
anywhere in a line. and indents from there to the neat tab stop. If you are not in Text made, this function can
be found on M- anyway.

Set the tab stops using Edit Tab Stops, which displiys fer you a buffer whose contents define the tab stops
The first line contains a colon or period at cach tab stop. Colon indicates an ordinary tah, which fills with
whitespace; @ period specifies that characters he copied from the corresponding columns of the second line
befow it. Thus, you can tab (o a colmnn antomatically inserting dashes or periods, cte. It is your
responsibility to put in the second line the text to be copied. The third and fourth lines you see contain
column numbers o help you edit. They are only there while vou are editing the tab stops; they are not really
part of the tab scttings. The first two lines reside in the variable Tab Stop Definitions when they are not being
edited. If the sccond line is not needed, Tab Swp Definitions can be just one fie, with no CRLEs. “This

makes it casicr to set the variable in a local modes list. See sectien 22.6 [1ocals], page 118.

114, Text Filling

Space i Auto Fill mode, breaks lines when appropriate.
M-Q 1l paragraph.

M-G Fill region (G is for Grind, by analogy with Lisp).
M-S Centeraline.

C-X = Show curicnt cursor position.

et 31 b W] D i

i

s
o ol e W ot L T

e

i

e

=

¥
]
3
¥
H
H
£
H
H
3

48 EMACS Manual for 'ES Users

EMACS 5 Auto Fill mode lets you type in text that is filled (broken up into lines that fit in & specified

widih) as you zo. f you alter existing text and thus cause it to cezse to be properiy filled, EMACS can fill it
again if you ask.

Entering Auto Fill mode is done with M-X Auto Fill. From then on, lines are breken antomatically at

spaces when they get longer than the desired width. New lines are usually indented. but in Text mode they
arc not. ‘To leave Auto Fill mode. cxecute M-X Auto Fill again.

When you finish a paragraph. you can type Space with.an argumcnt of zero. ‘This docsn’t insert any

spaces, but it does move the last word of the paragraph to a new line if it deesu’t fit in the old line. Return
also moves the last word, but it creates another blana line.

If you cdit the middle of a paragraph. it may no longer be correctly filled. "To re-{ill a paragraph, use the
command Meta-Q (~R Fill Paragraph). 1t causes the pargraph that point is inside, or the one afier point if

puoint is between paragraphs. to bere-filled. All the line-breaks are removed, and ihen new ones are inserted
where necessary.

If you are not happy with Mcta-Q's idea of where paragraphs start and end (the sime as Mcta-l's. See
section 112 [Paragraphsh, page -14.), you can use Meta-G (*RFill Region) which re-fills everything between
puint and nurk. Sometimes, itis ok o fill aregion of several parearaphs at once. Meta-G recegitizes a blank
line or an indented line as starting a paragraph and not 8 i in with the preceding line. The seguence
space-hackspace at the front of a line will prevent it from being filled into the preceding line but is invisible
when the file is printed. However, the full sophistication of the paragraph commands in recogniving
paragraph boundarics is not wailable. The purpose of M-G is to allow you tv overide EMACS's usual
criteria for paragraph boundarics.

Giving an argument to M-G or M-Q causcs the text to be justified instead of filied. This mcans that cxtra
spaces arc seried between the words so as to make the right margin come out exactly even. 1 do not

recommend doing this. If someenc else has uglificd sonie text by justifving it, you can usiustify it {remove
thc spaces) with M-G or M- without an argument.

The command Meta-S {(*R Center Line) centers a line within the current line width. With an argument, it
centens several lines individuadly wd moves past them.

The maximum line width i fiifing is in the varable Fiit Columa. Both 1M-Q and Auto Fill make sure that
no line excoeds this width The casiest way to sot the variable is to use the commiand C-X I (*R Sct Fili
Colunn) which places the margin at the columin point is on, or wherever you specify with a nunicric
argument. e fill column is initially columa 70.

To fill a paragraph in which cach line starts with a special marker (which might be a few spaces, giving an

* g+

PR

PRI IREr

i

A st L0

. h uni
e rmt bl B L8 o b bR

L

FrIL Lt

H
H
E
£
H
£
4
L]

Commands for English ext

indented paragtaph). usc the Fill Prefix featuie. Move the cutsor to a spot night after the special marker and
give the command C-X . ("R Set Fill Prefix). Then, filling the paragraph will remove the marker from cach
line beforchand, and put the marker back in on each fine afterward. Auto Fill when there is a fill prefiy wiit
insert the fill prefix at the front of cach new line. Also, any line which ducs not start with the fill prefix will be

considered to start a paragraph. To turn off the fill prefix, do C-X . with the cursor at the front of « line.

The vaiable Space Indent Flag controls whether Auto Fili mode indents the new lisies that it creates. A

nowsero value means that indentation should bz done.

The conmnand C-X = (What Cursor Position) can be used to find out the column that the cursor is in, and
uther miscellancous information about the cursor which is quick to compute. 1t prints a line in the ccho arca
that looks like this:

X=5 Y=7 CH=101 .=3874(35% of 11014} H=<3051,4640>
In this Tine, the X value is the column the cursor is in (zero at the feft), the Y value is the screen hine that the
cursur is in (zcio at the tap), the CH value is the octal value of the character after the cursor (101 is "A"). the
point value is the numiber of chatacters in the buffer before the cursor, and the values in parenthescs are the

petesntage of the buffer before the cusor and the total size of the buffer.

The 1 values are the virtual buffer boundaries, indicate which pait of the buffer is still visible when
narton ing has been done. If you have not done narrowing, the H values are omitted. FFor imore information

about the virtual buffer boundaries. Sce section 17 [Narrowing), page 77.

11.5. Case Conversion Commands

EMACS has commands for canverting cither a single word o1 any athitrary range of text to upper case or
to lower case.

M-L. Convert following ward to lower case.
M-U Convert [ollowing word to upper case.
M-C Capitalize the following word.
C-XC-L Convert region to lower case.

C-XC-U Convert region to upper case.

The word conversion comimands are the most useful. Meta-1. ("R Lowercase Word) converts the word
after point to lower case, moving past it. Thus, successive Meta-L's convert successive words. Meta-U
(*R Uppercase Wand) converts o all capitals instead, while Meta-C (R Uppercase Initial) puts the first
letter of the word inte upper case and the rest ato Tower case, Al these conmands convert several words at
once i given an atigument. They wie especially conmvenient for converting a large amount of text lrom all
upper case o mised case, because you can move thiough the text ustng M-1., M-U o M-C on cach word as

appropriate.

feowtn

a0 b A B > N

EMACS Manual for I't'S Users

When given 4 negative arguiment, the word case conversion commands apply to the appropiiate number of
words before puint, but do not move point. This is convenient when you have just typed a word in the wrong

case. You can give the case conversion command and continue typing.

It a word case comversion command is given in the middle of a word, it applics only to the part of the word

which foilows the cursor, treating it as a whole word.

'The other case comversion commands are C-X C-U (R Uppercase Region) and C-X C-1 (*R lLowercase
Region). which convert evenything between point and mark to the specified case. Point and mark do not
move. These commands ask for confirmation if the region contains more than Region Query Size characters:

they also save the original contents of the region so you can undo them (See section 24.3 [Undol, page 132.).

1.6, Font-Changing

I'MACS has commands o insert and move font change commands as undeistoad by the 136 and R text
qustifiers. A font change is assumed to be of the form t1<digit> meaning select the specified font, or t1*
meaning select the previously selected font.

M-# Change previous word's font, or next word's.
C-X # Change font of region.

M-# 15 o command to change the font of a word. Its action is rather complicated to desciibe, but that is

because it tries to be as versatile and comvenient as possible in practice.

If you type M-# with an argument, the previous word is put into the font specified by the argument.
Pointis not changed. T'his means that, iff you want tc " seit a word and put it in a specific font, you can type
the word. then use M-# to change its font, and then go on inserting. The font is changed by putting a

F1°digit> before the word and a 1% after.

If you type M-# with no argument, it takes the last font change (cither a t1<digit> or 11*, whichever is
later) and moves it one word forward. What this implies is that you can change the fonrt of several consecutive
words inciementally by moving afier the first word, issuing M- # with an argument to set that word’s font,

and then typing M-# 1o extend the font change past more words. Each M-# advances past onc more word.

M- 78 with a ncgative argument is the opposite of M-# with no mgument; it moves the last font change
back one word. 1 you type wo many M-#s, you can undo them this way. 11 you move one font change past
anuother, one o1 both are climinated, so as to do the tight thing. As a result, M-Minus M-# will undo a M- #

with an argument. Ty it!

You can also change the font of a whole 1egion by putting point and the mark around it and issuing C-X

N R R TN S L LIV R T

et st
—

. ! 4
ot HACPELL T 08 U ©] 1o Y il s L N w805 MLt s

i S B

!

8 el et L bt
i win

EN T

I
=

Commands tor English "T'ext

{
1
. with the font number as argument. C-X # with a negative argument removes all font changes inside or
adjacent to the region.

11.7. Underlining

FMACS has two commands for manipulating text-justifier undetlining command characters. Fhese
commands do not produce any soit of overprinting in the text file itscl; they insert or move command

chatacters which direct text justificrs to produce undetlining. By default, commands for the text justifier R

are uscd.
M-_ Underline previous word or next word.
C-X _ Underline region.
M- _ is somewhat tike M-# in that it cither cicates an underline around the pievious word or eatends it -

past the neat word. However, where a font change 1equires that you specify o font number, an undetline is

just an undethine and has no parametes for you to specify. Abso, it is assumed that the text justifiess

e gepris

commands for statting and ending underlines ate distinguishable, whereas you can’t tell fiom a font change

whether itis "starting” something or "ending” somethig, M-_ differs slightly from M- # as a result.

M-_ with no argument ccates an underline around the previous word if there is none. If theie is an
undetline there, it is extended one word forward, Thus, you can msert an undetlined word by typing the
woid and then a M-_. Or you can undetline several caisting words by moving past the first of them, and
typing onc M-_ for cach word.

M-_ given in the vicinity of an undailine-begin moves iforward. Thus, it should be thought of as

I L Y T N T P T e

applying to any boundary, where underlining cither starts or stops, and moving it forward. If a begin

underlining is moved past an end, or vice versa, they both disappcear.

B s P,

Giving M-_ an aiguient merely tells it to apply to several words at ance instead of one. M-_ with a

positive argument of n underlines the next n words, cither creating an underlined arca or extending an
existing onc. With a negative argument, that many prcvious words are underlined. Thus, M-_ can do more
things with undetdines than M-# can do with font changes, because of the facts that you don’t need to use the

arguiment to say which font, and you can telf a beginning from an end.

For latger scale operations, you can use C-X _ to place underlines from poiat to mark, or C-X _ with a

negative wgument to remove all underlining between point and mark.

By default, tB is used to begin an underline and 114 is used to end one. The variables Underline Begin and
Underline End may be created and set to strings to use instead. For a single character you can use the
numeric ASCH code for it,

rrem e _ - = -

EMACS Manuat for I'1'S Users

S PGEG——

Comimands for Fixing T'ypos

12. Commands for Fixing Typos

In this section we describe the commands that are especially useful for the times when you catch a mistake

in your text just after you have made it, or change your mind when writing something on line,

Rubout Delcte last character.

M-Rubout Kill Tast word.

C-X Rubout Kill to beginning of sentence.
c-r ‘Transposes two characters.
C-XC-T Transposcs two lincs,

C-XT ‘Transposes two arbitrary regions,

M-Minus M-, Convert last word to lower case.

M-Minus M-U Convert last word to all upper case.

M-Minus M-C Convert fast word o lower case with capital initial.
M- Fix up omitted shift key on digit.

12.1. Killing Your Mistakes

The Rubout command is the most important correction command. When used among printing

{sclf-inserting) characters, it can be thought of as canceling the last character typed.

When your mistake is longer than a couple of characters, it might be more convenicnt o use M-Rubout or
C-X Rubeut. M-Rubout kills back to the start of the last word, and C-X Rubout kills back to the stait of the
last sentence. C-X Rubout is particularly useful when you are thinking of what to wiite as you type it, in case

you change your mind about phrasing. M-Rubout and C-X Rubout save the killed teat for C-Y and M-Y to
retrieve (See section 9.2 [Un-killing], page 37.).

M-Rubout is often useful even when you have typed only a few characters wrong, if you know you are
confused in your typing and aren’t sure exactly what you typed. At such a fime, you cannot correct with

Rubout except by looking at the screen to see what you did. It requires less thought to kill the whole word
and start over again, especially if the syswem is heavily loaded.

12.2. ‘Transposition

‘The common crror of transposing two characters can be fixed, when they are adjacent, with the C-1
command. Normally, C-T transposcs the two characters on cither side of the cursor. When given at the end
of a linc, rather than transposing the last character of the fine with the line scparator, which would be usciess,
C-T transposes the last two characters oa the line. So, if you catchi vour transposition crror right away, you

can fix it with just a C-T. If you don’t catch it so fast, you must move the cursor back to between the two

£
i
H
H
£
i
H
H
I
is
JE
:
£
g
2
H
H
E
E
=
=
=

om—

[— mwwim:ﬂ .
<]
1\

=
ES
=3

EMACS Manual for I't'S Uscrs

transposed characters. 1f you tansposed a space with the fast character of the word befose it, the word motion

commands arc a good way of getting there. Qtherwise, a reverse search (C-R) is often the best way. Sce
section 10 [Scarch), page 41.

To transpose two lines, use the C-X C-1 command (“R Transpose Lines). M-T transposes words and
C-M-T transposces s-expressions.

A maore general transpose command is C-X T ("R “Transpose Regions). ‘This transposes two aibitrary
blocks of text. which need not even be next to cach other. To use it. set the mark at one end of one block,
then at the other end of the block; then go to the other block and set the mark at onc end, and put puint at the
other. In other words, point and the last three marks should be at the four locations which are the ends of the
two blocks. [t does not matter which of the four locations poing 1s at, or which order the others were marked.
C-X T transposces the two blocks of text thus identified, and relocates point and the thice manks withowt

changing their order.

12.3. Case Conversion

A vary common crror is to type words in the wrong case. Beciuuse of this. the word case-conversion
commands M-1, M-U and M-C have a special feature when used with a negative argument: they do not
move the cursor. As soon as you sce you have mistyped the last word, you can simply case-convert it and go
on typing. Sce section 11.5 [Casc], page 49.

Another common error is to type a special character and miss the shift key, producing a digit instead.
There is a special command for fixing this: M=" (*R Upcase Digit), which fixes the last digit before point in
this way (but only if that digit appcars on the current line or the previous line. Otherwise, to minimize
random cffeets of accidental use, M-" docs nothing). Once again, the cursor does not move, SO you can use
M- when you notice the crror and immediately continue typing. Because M-' needs to know the
arrangement of your keyboard, the fist titme you use it you must supply the information by typing the row of
digits 1, 2. .. . 9. 0but holding down the shift Rey. "This tells M-" the correspondence hetween digits and special
characters, which is remembered for the dusation: of the EMACS. ‘This command is called M-* because its

main use is to replace 7" with a single-quote.

Lt K LV

EICTE

b Tl 0

Iile T landling

13. File Handling

‘The basic unit of stored data is the file. Each program, cach paper, lives usually in its own file. To cdit a
program or paper, the cditor must be told the name of the file that contains it. “This is called "visiting” the
file. T'o mike sour changes to the file permancnt on disk. you must "save” the file. EMACS also has facilitics
for deleting files convenicntly, and for listing your file dircctory. Special text in a file can specify the modces

to be used when editing the file.

13.1. Visiting Files

C-XC-V Visit a file.
C-XC-R Visit a file for reading only.
C-XC-S Save the visited file.
Meta-~ Tell EMACS to forget that the butfer has been changed.
Visiting a file means copying its contents into 3MACS where you can edit them. EMACS remembers the
name of the file you visited. Unless you use the multiple buffer and window features of EMACS, you can

only be visiting one file at a time. The name of the file you are visiting in the currently selected buffer is

vistble in the mode line when you are at top level,

et

it

‘The changes you make with EMACS to the text of the file you are visiting aie made not in the file itsclf,

s
ot

but in a copy inside EMACS. The file itselfis not changed. ‘The changed text is not permanent until you save

itin a file. The first time you change the text, a star appeas at the end of the mode line: this indicates that the

text contains ficsh changes which will be lost unless you save them. You can do that at any time with C-X
C-S. If you change one file and then try to visit another in the same buffer, EMACS offers to save the first

file (if it is not saved, the changes arc lost). In addition, for thuse who are afraid of system crashes, Auto Save

mode saves the file at regular intervals automatically while you edit. Sce section 13.3 {Auto Save], page 57.

Journal files are another way of protecting against crashes. Sce section 24.4 [Journals], page 133.

To visit a file, use the command C-X C-V (*R Visit File). Foltow the command with the name of the file
you wish to visit, terminated by a Return. 1 you can sce a {ilename in the mode line, then that name is the
defiult, and any component of the filename which you don’t specify is taken from them. If BMACS thinks
vou can’t see the defaults, they are included in the prompt. You can aboit the command by typing C-G. or

edit the filename with Rubout and C-U. If you do type a Return to finish the command, the new [ile’s text

appeats on the sereen, and its nanic shovs up in the maode dine.

3 When you wish to save the file and make your changes permanent, type C-X C-S (*R Save File). After
the save is finished, C-X C-S prints "Written: <filepames>" in the echo arca at the bottem of the sereen. If
)

&

o

56 FMACS Manual for FFS Users

you arc visiting a file whose name is ">", this message contains the version number actually written, 1f there

are no changes to save, the file is not smved; it would be redundant to save a duplicate of the previous version.

However, you need not do the saves yourself. 1 you alter one file and then visit another, EMACS may
offer to save the old one. If you answer Y, the old file is saved; if you answer N, all the changes you have
made to it since the last save are lost. You should not type ahead after a file visiting command, because your
typc-ahcad might answer an uncxpected question in a way that you would regret. If you are sure you only
want 1o look at a file, and not change it, you can use the C-X C-R command to visit it, instead of C-X C-V. If
a file was visited with C-X C-R, EMACS doces not offer to save it when you visit the next file. 1t assumes the
changes were inadvertent. Howeser, you can still save the file with C-X C-S.

I EMACS is about to save a file antomatically and discovers that the text is now a lot shorter than it used
to be, it tells you so and asks for confirmation (Y or N). I you wen’t sure what to answer (because you arc

surprised that it has shrunk). type C-G 1o abort everything, and take a look at your buffer.

Sometimes you will change a buffer by accident. Even if you undo the change {(perhaps, tub out the
charicter you inserted). EMACS stilt knows that "the butfer has been changed”. You can el EMACS w
forget about that with the Meta-~ (R Buller Not Modified) command. This command simply clears the
"madificd” Nag which says that the buffer containg changes which need to be saved. It is up to you not to use

it unwisely. tFwetake™ <™ 1o mean "not”, then Mcta-~ is "not” metaficd.

What i you want to wreate a file? Just visit it. EMACS print "(New File)” but otherwise acts unworried.
If yvou make any changes and save them, the file is created. I you visit a nonexistent file unintentionally
(because you typed the wrong file name), visit the file you meant. If you didn’t "change” the nonexistent file
(you never inserted anything in it), it is not created.

IFEMACS is about to save a file and sees that the Tatest version on disk is not the same one as EMACS last
read or wrote, FMACS notifics you of this fact, and asks what 1o do, because this probably means that
something is wrong., For exanple, somcone else may have been editing the same file, I this is so, there is a
goad chance that your wark or his work will be Tost if you don’t take the proper steps. You should first find
out exactly what is going on. “The C-X C-1 command to list the dircctory will help. [you determine that
someone clse has maodified _lhc file, save vour file under different names (or at least making a new version)
and then SRCCOM the two files to merge the two sels of Jln.nxxgcs. Also get in touch with the other person so
that he doesn’t continue cditing.

)

e

A\

TR AR e

s s Mt

| Bl B Bty e e e

=
£
F
£
¥
H
<

File Handling

13.2. Tlow to Undo Drastic Changes to a File

If you have made extensive changes to a file and then change your mind about them, you can get rid of
them by reading in the previous version of the file. To do this, use M-X Revert File. 1 you have been using
Auto Save mode, it reads in the last version of the visited file or the last auto save file, whichever is more

feeent.

If you are using Auto Save mode, saving as special Auto Save filenames, then you can ask to revert to the
Jast “real” save, ignoring subsequent auto saves, with C-U M-X Revert File. If you are using the style of auw

saving which saves under the real filenames, this is not possible.

M-X Revert File daes not change point, so that if the file was only cdited slightly, you will be at
approximately the same piece of text after the Reveit as before. 1 you have made drastic changes, the same

value of point in the old file may address i totally different picee of text.

Because M-X Revert File can be a disaster if done by mistake, it asks for confirmation (Y or N) before
duing its work. A pre-comma argument can be used to inhibit the request for confirmation when you call the

function Revert #ile from a TECO program, as in LA(M.M Revert_Filed).
prog

-

13.3. Auto Save Mode: Protection Against Crashes

If you turn on Auto Save mode, EMACS saves your file from time o time (based on counting your
conmands) without being asked. Your {ile is also saved if you stop typing for more than a few minules when
there are changes in the buffer. This prevents you fram losing more than a limited cmount of work when the
system crashes. (Another method of protection against crashes is the journal file. See section 24.4 [Journals},
page 133.). You can turn auto saving on or off in an individual buffer with M-X Auto Save, In addition. you
can have auto saving by default in all buffers by sctiing the option Auto Save Default. ‘The frequency of

saving. and the number of saved versions to keep, can both be specified.

Each time you visit a file, no matter how, auto saving will be on for that file iff Auto Save Defoult is
nonzero, However, by giving a nonzero argument te the file-visiting comniand, you can turn ofT auto saving
Sor that file only, without changing the defautt. For exanple. you might use C-U C-X C-V 1o do this. Once
you hane visited a file, you can tin awto saving on or off” with M-X Auto Save. ©ike other minor mode
comnunds, M-X Auto Save turns the mode on with a positive argument, ofl with a scro or negative
argument; with no argunient, it toggles. 1 you start typing « new file into a buffer without visiting anything,

auto save mode is initially off, but you can turn it on with M-X Auto Save.

When an auto save happens, "(Auto Save})” is printed in the echo arca (On a printing teiminal, the bell is

AILLIREK]

B = mmow i e WHE E= SR

58

FMACS Manual for IS Users

rung instead). An ciror in the process of auto saving prints "(Auto Save Errort)”.
1.ct us suppose that it is time for an automatic save to be done: where should the file be saved?

T'wo workable methods have been developed: save the file under the names you have visited, or save it
under some special "auto save file name”. Each solution has its good and bad points. ‘The first one is
excelleat some of the time, but intolcrable the rest of the time. ‘The second is usually acceptable. Auto saving
under the visited file’s actual names means that you need do nothing special to gobble the auto save file when
you need it; and it means that there is no need to werry about interference between two users sharing a
dircctory, as fong as they aren't editing the same file at once. owever, this method can somctimes have

probiems:

If you visit a file un a device other than DSK. auto saves can’t go there, because it would
probably be slow,

il vour filc does not have a numeric version number, or yon have visited a fixed version, auto
saves can't go ander that name, because they would clabber the original file.

IT you visit a file with C-X C-R, then you have said you don't want (o store under those namncs,

Ifyou haven't visited a file. there aren’t any names to use,
I all these cases. the filenames for auto saving are Giken from the variable Aute Save Filenames. I none of
those cases apply then it is pessible to stere auto sines under the visited name. “This will be donce, provided
that vou tuin on the featitre by setting the variable Auto Save Visited File o a nonvzero value,

When you want to save your file "for reat”. use C-X C-8, as always. C-U C-X C-5 is a way to request an

e i B D ol Lk o) b b
Bt el 4 oA o R 0) v b g i s s " . w
wantl b bl Y

“aquta” save explicitly. When you are auto simving under the visited filenames, thee s not much difference

I

between an auto save and a "real” save, exeept that an auto save will eventually be deleted automatically by

EMACS a foew auto saves fater, while a “real” save will be left around forever (at least, auto save won't delete

it).

When it is time to recaver from a system crash by reloading the auto save file, if auto saving was esing the

visited file names you have nothing speciad to do. If auto saving was using special auto save filenames, read in

1 bl W g 5 N i i ok

the fast atito save file and then use C-X C-W (Write FFile) to write it out in its real location, $H you want to use

fot |
i

an anta save file w tirow away chenges that you don’t like, you can use M-X Revert File, which knows how

1o find the most recent save, permanent or got, under whatever filenames. Sce section 13.2 [Revert], page 57.

For your piotection, if a file has shrunk by more than 30% since the Tast sa ¢, aulo saving docs nol sive.

Hstead it prints a message that the Bite has shrunk. You can save explicitly il you wish: after that, auto saving -
will resume.

vk Hawitee W ¢ PR
g

Although auto saving gencraies Buge numbers of files, it does not clog directories, because it cleans up

after itsclf. Only the last Auto Save Max auto save files arc kept; as further saves are done, old awto saves are

IS

e om ST R

!
:
:
i
!

I-le Handling

deleted. However, files which were not made by auto saving (or by explicitly requested auto-saves with C-U
C-X C-S) arc never deleted in this way. ‘The variable Auto Save Max is initially 2. Changing the value may

not take eftect in a given buffer until you turn auto saving ofT and on in that buffer.

The number of charactess of input between auto saves is controlled by the variable Auto Save Interval. It
is initiaily 500. Changing this takes effect immediately.

Auto Save Filenames is usually sct up by the Jefault init file to DSK:Kworking directory>; _~RSV >. If
yor use auto sning in multipie buffers a lot, you might want to have a Buffer Creation Hook which sets Auto

Siave Filenames to a filename based on the buffer name, so that different buffers don’t interfere with each
other,

13.1. Listing a File Dircctory

To took at a part of a file dircctory, use the C-¥X C-D command (R Dircctory Display). With no
argument, it shows you the file you aie visiting, and related files with the same first name. C-U C-X C-D)

reads a filename from the terminal and shows you the files related w that filename.

To sce the whole directory in & brief format, usc the function List I<iles, which takes the directory niene as

astring argument. “The function View Directory prints a verhose listing of a whole directory.

The variable Auto Dircctory Display can be set to make many file operations display the directory
automatically. ‘The variable is normally 0; making it positive causes write operations such as Write File to
display the directory, and making it negative causes read operations such as Insert File or visting to display it
as well, ‘The dispk y is done using the default directory listing function whiich is kept in the variable Dircctory
Lister. Normally, in EMACS, this is the function that displays oaly the files related to the current defauit
file. An aliernative type of dircctory listing can be obtained by sctting Dircctory Lister to M.M& Rotated
Directory Listing4. ‘This function always displays the whole directory, but starts with the file you are
interested in, procecding through the end of the directory around to the beginning.

13.5. Cleaning a File Directory

The normal course of cditing constantly creates new versions of files. £ yon don’t eventually delete the old
venions, the direceory will fill up and further editing will be impossible, EMACS has commands that make it

casy Lo delete the old versions.

For complete fexibility to delete precisely the files you want to delete, you can use the DIRED package.
Sce section 13.6 llil RED], page 60, for more details.

[ySr——
RERYINEN

O Gl I R P

o O PR A W’u"lﬂﬂWW“ﬂﬂMu

o

But there is a more convenient way to do the usual thing: keep only the two (or other number) most

recent versions.

M-X Reap Filed<filed<cr> counts the number of versions of <filed. 1f there arc more than two, you are
told the names of the recent oncs (to be kept) and the names of the older ones (to be deleted), and asked
whether to do the deletion (answer Y or N). Files which have the "Don’t Reap™ bit sct are cxcluded: they are
always kept.

Reap File makes a special offer to delete individual files whose IFN2 indicates that they are likely to be
temporary. ‘The list of temporary names is contained in a T1CO scarch string in the variabic Temp File F'N2
List. Sce section 19.3 {TECO scarch strings]. page 85.

If you give M-X Reap File a null filename argument. or no argument. then it applies to the file you are
visiting.

M-X Clean Directory#<dirname>; <cr> cleans a whole directory of old versions. Each file in the dircctory

is processed a la M-X Reap File. M-X Clean Dir with a null argument, or no argument, cleans the directory
containing the file you are visiting.

M-X Reap File and M-X Clean Dir can be given i numeric argument which specifics how maay versions
to keep. For example, C-U 4 M-X Reap File would keep the four most recent versions. "The default when

there is no argument is the value of the variable FFile Versions Kept, which is initially 2.

13.6. DIRED, the Directory Editor Subsystem

DIRED makes it casy to delete many of the fiies i & single directory at once. [t preseats a capy of a listing

of the directory, which you can move around in, marking files for deletion. When you are satisfied, you can
tell DIRED to go ahead and delete the marked files.

Imoke DIRED with M-X DIRED to edit the current default dircctory, or M-X DIRED#Kdird><cr to edit
directory <dir>. You arc then given a listing of the directory which you can move around in with all the
norpzal FMACS motion commands, Some EMACS commands are made illegal and others do special things,

butit's still a recusive editing level which you can exit normally with C-M-C and abort with C-].

You can mark a file for defetion by moving to tite line describing the file and typing 1), C-1), K, or (-K.
‘The deletion niuk is visible as a 1) at the beginning of the tine, Point is moved to the Geginning of the next
linc, wo that several 1)'s delete several files. Alternatively, if you give 1) an s-gument it marks that many
consccutive files. Given a negative argument, it marks the preceding file {or several files) and puts point at

the first (in the buffer) line marked. Most of the DIRED commands (1D, U, 4, §, P, S, C, I5, Space) repeat this

EMACS Manual ;'or I't'S Users

1%L I

i £ e U W L

Sy

i B b

e TR s el
& E sl Z

File Handling

way with numeric arguments.

RS Y0 4 T

e

If you wish to remove a deletion mark, use the U (for Undclete) command, which is invoked like 1): it
removes the deletion mark from the current line (or next fow lines, if given an argument). ‘The Rubout
command removes the deletion mark from the previous line, moving up to that linc.. Thus. a Rubout after

1) precisely cancels the 1.

IFor extra convenicice, Space is made a commund similar (o C-N. Moving down a line is done so often in

DIRED that it deserves to be casy to type. Rubout is often useful simply for moving up.

If you are not sure winether you want to delete a file, you can cxamine it by typing b. his enters a
recursive editing mode on the file, which you can exit with C-M-C. “The file is not really visited at that time.
and you are not allowed to change it. When you exit the recussive editing level. you return o DIRED. The V

command is like I but uses View File to look at the file.

When you hine marked the files you wish to mark. you can exit DIRED with C-M-C. If imy files were
marked for deletion, DIRED fists them in a concise forma, severat pei line. A file with ™" appearing next to
it in this list has not been saved on tape and will be gone forever if deleted. A file with > in front of 1015 the
most recent version of a sequence and you should be wary of deleting st “Then DIRED asks Tor confinmation
of the ist. You can type "YES” (Just *Y" wan't do) to go ahead and delete them, "N™ o retann to ediies the

ditectary so you can change the masks, or “X™ to give up and delete nothing, No Return chasacter s needed.

v i

Aniything cehe typed makes DIRFD printadist of these iesponses and try again to sead one of them,

13.6.1. Other DIRED Commands

Dkt

WAL

The "1 commiand moeves down (or up, with an argument of 1) to the nevt undumped file (one with a 17

bl YOU 1+ kB

before its date).

s
(Ll W el e

N finds the next “hog™: the next file which has at least three versions. gg
I"when given on a ling describing a link marks for deletion the file which the link points to. ‘This file nced =

not be in the directory you are cditing to be deleted in this way.

ol Pl 1 it o il

S copies the file you are pointing at to the secondary pack.

i capics the file you are piinting at to the primary pack.

- $ complements the don't-reap attribute of the file; this is displayed as a dollar sign to the ieft of the file

date.

62 EMACS Manual tor I'T'S Users

M moves the file to another directory orF device. You must say where to move it

C runs SRCCOM to comparc the file vession you are pointing at with the fatest version of the same fite.
You must confirm the SRCCOM command with a Return before it is executed; you can add extra SRCCOM

switches before the Return. When you return to EMACS, the cursor moves down a line to the next file.

I helps you clean up. 1t marks “old” versions of the current file. and versionus with "temporary™ second
file names. for deletion. You can then use the 1 and U commands to add and remove marks before deicting
the files. The variables File Vensioas Kept and Temp File FN2 List contiol which files 1 picke Tor deletion.

With an argument (C-Ui H). it docs the whole directory instead of just the current file.

2 displays o list of the DIRED commands.

13.6.2. Invoking DIRED

“There are some other wans to invoke DIRED. “The Emacs command C-X 1) puts you in DIRED on the
directory containing the file you are currenttly editing. With i numeric argument of 1 (C-U 1 C-X D), only
the current file is displayed instead of the whole dircctory. In combination with the H command this can te
uscful for cleaning up excess versions of a file after a heavy cditing session. With i numeric argument of 4
(C-0 C-X D), it asks you "Dircctory:”. Type a directory name follo: ~d by a semicolon, and/or a file name.

If s ou explicitly specify a file name only versions of that file are displayed, otherwise the whole directory is
displayed.

13.6.3. Editing the DIRED Buffer Yourself

it is unwise to try to cdit the ext of the dircctory listing yoursclf, without using the special DIRED
cormmands, unless you know what vou are duing, since you can confuse DIRED that way. To make it less
likely that you will do so accidentally. the self-inserting characters are all made illegal inside DIRED.
However, deleting whole lines at a time is certainly safe. This does not delete the files described by those
lines: instead, 1t makes DIRED forget that they arc tirere and thus makes sure they will nor be deleted. Thus,

M-X Keep Lines? is nuseful i you wish to delete only files with a FOO in their names. See section 19
[Repliceinent). page 83.

For more complicated things, you can usc the minibuffer. When you call the minibuffer from within
PURED, you get a perfectly normal one. The special DIRED commands are not present while you are cditing

in thc minibuffer. To mark i file for deletion. replace the space at the beginning of its line with a "D™. To
remove a mark. replace the "D” with a space.

i i

e, Sl 0

=
B
E
L
—?;
E!
=

o e w e TS o B AR

Mo
AT

D
i ‘f A

By
AT A

I'ne Handiing

13.7. Miscellanesus File Operations

EMACS has extended commands tor performing many other operations on filces,

M-X View File# <filed <cr> allows you to scan or read a file by sequential screenfuls without visiting the
file, 1t enters a subsystem in which you type a Space to sce the next sereenful o= a Backspace to sce the
previous screenful. Typing arything clse exits the command. View File does not visit the file; it does not

alter the contents of any bulfer. Fhe advantage of View I<ile is that the whuole file does not need to be loaded

befors you can begin reading it. "The inability to do anything but page forward or backward is a conscquence.

M-X Write I¥ile¢ <file> <cr> writes the contents of the bufier into the file <filed, and then visits that file, 1t

can be thought of as & way of "changing the name” of the file you are visiting. C-X C-W is another way of
ging

acting at this command.

M-X Insert ile# <filed <crd inserts the contents of <filed into the bufTer at point, leaving point unchanged

before the contents and mark after them. “Fhe current defaults are used for <file>, and are updated.

M-X Write Regiond <filed <cr~ writes the region (the text between point and mark) to the specified file. 1t

docs not set the visited filename... The buffer is not changed.
M-X Append to Filed <file> <crd appends the region to <filed. ‘The text is added to the end of <filed.

M-X Prepend to Filed <filed <cr> adds the text to the beginning ol <file> instead of the end.

M-X Set Visited Filenamed<hiled<er> changes the namie of the file being visited without icading or writing

the data in the buffer. M-X Write File is cquivalent to this command followed by a C-X C-S.
M-X List Files¢<dir specd<er> lists just the names of all the files in <dir>, scveral 1o a line.
M-X Delete File¢<filed<erd deletes the file.

M-X Copy Filed<old file>e<new file><cr? copics the file,
M-X Rename File#<old name>#<new named<cr> renanes the file,

The default filenames for all of these operations are the “TECO default filenames”. Most of these
operations also Ieave the TECO default names <.t to the file they operated on. ‘The 'TECQO default is not
always the same as the file you are visiting. When you visit a file, they start cut the same; the commands
mentioned above change the T1HCO default, but do not change the visited filenames. Fach buffer has its own
TECO default filenames,

‘The operation of visiting a file is available as a finction under the name M-X Visit File¢<filed¢. In this

Wl "
L T bbby v

EMACS Manual tor IS Users

form, it uses the TECO default as its defaults, though it still sets both the TECO default and the visited

filenames.

13.8. The Directory Comparison Subsystem

The function Compare Directories makes it casy to compare two directories to see which files are present
in both and which arc present only in onc. It compares a dircctory on the local machine with the directory of

the same namic on another machine.

Do M-X Compare Dircctoriesé<imachine>:<dir spec> <switchi>$, where <machined is Al, M1.. MC or DM,
and is not the inachine you arce on. <dir specd is an optional directory name and semicolon, and the optional

switch is a slash followed by S, D or L.

Afler it while of crunchine vou will be placed in a recursive editing level on a listing of both dircciorics.
“The reason for the recursive o ting level is simply to make it casy for you to view the comparison; unlike
DIRED, Compare Dircctories does not have any commands for moving or deleting the files. "To exit, do
C-M-C.

Hete is a sumple of part of a directory comparison:

AT RMS #1=72 #2=78 #3=71 #4=77 #5=87 -
MC RMS #0=231 #1=254 #13=2844
AT MC .DDT. (INIT) 1 11/18/76 01:08 10/21/76 05:06
Al MC © .DDT« (INIT) STAN.K ML EXIT
MC L .TECO. (INIT) .TECO. .TECO. (INIT)

Al AR2 1 16 2/6/77 17:51

Al AR3 1 13 2/17/77 21:37

Al L ATS ORDER .INFO. @ ORDER
MC FTPU 4 9 1374771 16:46
MC FTPU 5 9 13747717 16:49

AT MC MATCH 1 15 13/4/77 15:39 13/4/717 15:39

It begins with one line for each of the two directorics, these lines say which two directories they are, and

how much disk space is available on ¢cach of the machings.

Then there comes the list of files, one line for cach distinet pair of filenames that appeans. AL the
beginning of the line appear the nanes of twe machines on which the file eaists. At the end of the line come
the creation dates (or names pointed at, for links) of the file for the machines it is on. Note that all the

dates/link names for the first machine line up, and so do alt thase for the second machine,

The switches allow you to view only some of the files. “The /S switch shows only files present on both

muchines. /13 shows only those not present on both machines. /1. shows only files which are the most recent

AR At 5 o 0 1 10 ¢

~ 2T e ARy 1

File Handling

mm«wnwmwﬂﬂmmwmms

(fargest-numbered) of a sequence. Only one switch is allowed.

T T A TR LT

g T e g s IR TIRI iy

MACS Manual tor I'1's Users

.

R T R Ty o

Lising Multiple Buffers

14. Using Multiple Buffers

C-XB Scieet or create a buffer.
C-XC-F Visit a file in a ncw buffer.,
C-XC-B L ist the existing buffers,
C-XK Kill a buffer.

When we speak of "the buffer”, which contains the text you are cditing. we have given the impression that
there is only one. In fact, there may be many of them, cach with its own body of text. At any time only one
buffer can be “sclected” and available for cditing, but it isn't hard to switch to a different one. Each buffer
mdividually remembers which file it is visiting, what modes are in effect, and whether there are any changes

that need saving.

Fach buffer in EMACS has a single name, which normally docsu’t change. A buffer’s name can be any
length. The name of the currently selected buffer, and the name of the file visited in it, arc visible in the

maode line when you are at top level. A newly started EMACS has only one buffer, named "Main®,

As well as the visited lile and the major mode, a buffer can, if ordered to, ranember many other things

"locally”, which means, independently of all other buffers. See section 22.3 [Variables), page 114.

14.1, Creating and Selecting Buffers

To create i new buffer, you need only think of a name for it (say, "FOO™ and then do C-X B FOO<er,
which is the command C-X B (Sclcet Buffer) followed by the name. This makes a new. empty buffer and
select it for editing. The new buffer is not visiting any file, so if you try to save it you will be asked for the
filenames to use. Each buffer has its own major mode; the new buffer’s major mode is tuken from the value
of the variable Default Major Mode, or from the major mode of the previously sclected buffer if that variable

is the null string. Normally this is Fundamental mode.

To return o buffer OO later after having switched to another, the same command C-X B FOO<Ler> is
used, since C-X B can tell whether a bulfer named FOQ exists already or not. 1t does not matter whether you
use upper case or lower case in typing the name of a buffer. C-X B Main<er> reselects the buffer Main that
EMACS stated out with. Just C-X 1Ker> 1eselects the previous buller. Repeated C-X B<ed's alternate

between the Last two bulfers selected.

You can dlso tead a file into its own newly ereated buffer, all with one comnnnd: C-X C-F, followed by
the filenaume. The first name of the file becomes the buffer name. C-17 stands for "Find", because if the
specificd file already resides in o buffer in your EMACS, that buffer will be reselected. So you need not

remember whether you have brought the file in already or not. A buffcr‘_i:rcalcd by C-X C-F can be

it

i R D PMRALH

68 EMACS Manual for I'1'S Users

resclected laer with C-X B or C-X C-F, whichever you find more convenient. Nonexistent files can be
created with C-X C-F just as they can be with C-X C-V.

If the buffer with the same name that C-X C-F wants to use alrcady cxists but with the wrong contents
(often a different file with a similar name). then you are asked what to do. You can type Return meaning go
ahead and usc the buffer for this new file, or you can type anoder buffer name to use instead of the normal
one. 1FC-X C-F docs find the file already in a buffer, then it checks to sce whether the version on disk is the
same as the Last version read or wiitten from that buffer, for safety. If they are different, you are warned that
someone else may be editing the file, and left with the version which was already in the EMACS., To get the

new version from disk instead, use M-X Revert File,

14.2. Using Existing Buffers

To get a list of all the bufTers that exist, do C-X C-B (1 ist Buffers). Fach buffer’s name, nugjor mode, and
visited filenames are printed. A star at the beginning of a line idicates o buffer which contains changes that
hane not been saved. "Phe number that appears before o buffer’s name in a C-X C-B listing is that buffer’s
"buffer number”. You can select a buifer by giving its numiber as a numeric argument to C-X B, which then

dues not nced to read astring from the terminal,

If several buffers have stars, you should save some of them with M-X Save Al Files. This finds afl the
bufters that need saving and asks about cach one individually, Saving the buffers this way is much casicr and

maove cfficient than sciccting cach one and typing C-X C-S.

A quick way of glancing at another buffer, faster than sclecting it, is to use M-X View
Bufler#<buffernamed><cr>. This displays the contents of the other buffer and lets you move forward and back

a screen at a time with Space and Backspace. Sce section 15 [Display], page 71.

M-X Renamie Bufferé<new named<crd changes the name of the currently selected buifer. I <new name>

is the null string, the first filename of the visited file is the used for the new name of the buffer.

The commands C-X A ("R Append to Buffer) and M-X Insert Buffer can be used to copy text from one
bufler to another. Sce section 9.3 {Copying]. page 38.

14.3. Killing Buffers

After you use an EMACS for a while, it may fill up with buffers which you no longer nced. Eventually
you can reach a point where trying to create any more results in an "URK" error. So whenever it is

comenient you should do M-X Kill Some BufTers, which asks about cach buffer individually. You can say Y

e L T

IPNEE & NN [7 e O e A

Using Muluple Butters

or N to kill it or not. Or you can say Control-R to take a look at it first. This does not actually select the

buffer, as the mode line shows, but gives you o recursive cditing level in which you can move around and look
at things. When you have seen enough to make up your mind, exit the recursive editing level with a C-M-C
and you will be asked the question again. 1f you say to kill a bulfer that needs saving, you will be asked
whether it should be saved.

You can kill the buffer FOO by doing C-X K FOOLer>. You can kill the current buffer, a common thing
to do if you use C-X C-I-, by doing C-X K<crd. If you kill the current buffer, in any way, EMACS asks you
which buffer to select instead. Saying just <crd at that point tells EMACS to choose one reasonably. C-X K
runs the function Kilt Buffer.

T G

4]
&
)
n

or

wmual

‘
3

MACSM

K

e o s g
&,_ PR ;“

==

Controlling the Display 1

W o B :»;wqum%wi'“
)

15. Controlling the Display

C-L Clear and redisplay screen, with point at specified place.
c-v Scroll forwards (a screen or a few lines).

M-V Scroil backwards.

M-R Maove point to given vertical position.

C-M-R Get this function onto the screen.

The terminal screen is rarely large enough to display all of your file. If the whole buffer doesn’t fit on the
screen, FMACS shows a contiguous portion of it, containing point. It continues to show approximately the
same portion until point moves outside of it; then EMACS chooses a new portion centered around the new

point. This is EMACS’s guess as to what you are most interested in secing. But if the guess is wrong, you can

use the display contiol commands to see a different portion. "Fhe finite wmea of screen thiough which you can

see part of the buffer is called “the window”, and the choice of where in the buffer to start displaying is also
called “"the window”,

T

A

L

|
i

‘The basic display control command is C-1. ("R New Window). In its simplest form, with no argument, it
clears the screen and tells EMACS to display a portion of the buffer centered around where point is currently
located (actually, point is placed 35% of the way down from the top; this percentage is controlled by the flug
I'S % CENTER®, v hose value is the percent of the screen down from the top. See section 22.5 [1FS Flags),
page 117.).

T

C-1. with a positive argument chooses a new window so as to put point that many lines from the top. An

A Sl 30 i

argument of zero puts puint on the very top line. Point does not move with respect w the text; rather, the text

v il

and point move rigidly on the screen. C-1. with a negative argument puts point that many lines from the
botiom of the window. For example, C-U -1 C-1. puts point on the bottom line, and C-U -5 C-1. puts it five
lines from the bottom. C-1. with an argument does not clear the screen, so that it can move the text on the
screen without sending it again il the terminal allows that.

v

ahiany R i PIOLEI Ut v s A

C-U C-L is different from C-1. with any other sort of argument. It causes the line containing point to be
redisplayed but not the whole screen.

a5 gt 0 £

If you want to see a few more lines at the bottom of the sereen and don’t want o guess what argument to
aive to C-1., you can use the C-V (*R Next Screen) command, C-V with an agument shows you that many
more Tines at the bottom of the screen, maoving the text and point up together as C-1omight,. C-V with a
negistive argunient shows you more lines at the top of the sereen, as does Meta-V ("R Previous Screen) with a

positive argument.

Often you want to read a long file sequentially. For this, the C-V command without an argument is idcal;

S e et s o) L5 ST

= Tﬁi;::;ﬁ

= == 2=
m@‘_%‘ﬂw
R e =

12 EMACS Manual for I'T'S Users

it takes the last two lines at the bottom of the scicen and puts them at the top. followed by nearly a whole

screenful of lines not visible hefor2. Point is put at the top of the sereen. Thus, cach C-V shows the "next

screenful”, except for two lines of ovarlap to provide continuity. The varizble Next Screen Context Lings, if

defined, controls how many lines frons the bottom of the screen move to the top; the default if the variable is

not defined is 2. To move backward, use M-V without an argument, which moves a whole screenful

backwards (again with overlap).

Scanning by screeninils through the buffer for some distance is most conveniently donc with the M-X View

Buffer command. This command enters o simple subsysten: in which Space moves a screenful forward and

Backspace moves a sccenful backward. The Return character exits, leaving point centered in whatever part

of the buffer was visible. Any other character exits and returns point to its foimer tocation, and is then

exccuted as it command (unless it is a Rubout: Rubout exits but is not exceuted). View Buffer can be used to

view another buller by giving the buller™s name as a string argument. In this case. exiting with Return smoves

point permancatly in the other bulter, but does notselectit. See seetion 14 |Buffeis], page 67.

You can also scar by screenfuls through a file which you have not visited with the M-X View File

command. Sce section 13.7 {[Advaneed File Commands), page 63.

“To scroll the buffer so that the current function or paragraph is positioned conveniently on the screen. use

the C-M-R command (*R Reposition Window). ‘This comma.d tries to get as much as possible of the

current function or paragraph onto the screen. preferring the beginning to the end, but not moving point off

the sereen. A "function™ i Lisp mode is a defun: otherwise it is defined to be a set of consccutive

unindented lines, or a set of consccutive indented lines.

C-1. in all its forms changes the position of point on the screen, carrying the text with it. Another

command moves puint the same way but leaves the text fixed. Itis called Meta-R (*R Move to Screen Fdge).

With no argument, it puts point at the center of the screen. An argumient is used to specify the line to put it

on. counting from the top if the argument is positive, or from the bottom if it is negative. Thus. Mcta-R with

an argument of 0 puts the cursor on the top line of the screen. Meta-R never causes any text to move on the

sereen; it causes point to move with respect to the screen and the text.

LA R | 8

Two Window Mode

16. Two Window Mode

c-X2 Start showing two windows,

C-X3 Show two windows but stay “in" the top one.

C-X1 Show only one window again.

cX0 Svitch to the Other window

C-X4 Find buffer, file or tag in other window.

cX-~ Make this window bigger.

C-M-vV Scroll the other window.

Normally, EMACS is in “one-window mode”, in which a single body of text is visible on the screen and

can be edited. At times, it is useful to have parts of two different files visible at once. For example, while
adding to g program a use of an unfumiliar feature, one might wish to see the documentation of that feature at

the same time. Two-window made makes this possible.

‘The command C-X 2 ("R "Two Windows) enters two-window mode. A line of dashes appears across the
middle of the screen, dividing the text display area into two halves. Window one, containing the sanie text as
previously occupied the whole screen, fills the top half, while window two fills the bottom half. “The cursor
moves to window two. If this is your first entry to two-window mode, window two will contain a new buffer
named W2, Dtherwise, it will contain the same text it held the last time you looked at it. The mode line will
now describe e buffer and file in window two. 1t's hard to provide a mode line for each window, but

ntaking the mode line apply to the window you are in is the next best thing.

You can now edit in window two as you wish, while window one remains visible. When you arc tinished
cditing or looking at the text in window two, C-X 1 (*R One Window) returns o onc-window mode.

Window one expands to fill the whole screen, and window two disappears until the next C-X 2.

While you are in two window mode you can use C-X O (*R Other Window) to switch between the
windows. After doing C-X 2, the cursor is in window two. Doing C-X Q moves the cursor back to window
ong, to exactly where it was before the C-X 2. 'The difference between this and doing C-X 1 is that C-X O
leaves window two visible on the screen. A second C-X O moves the cussor back into window two, to whete
it was beforethe first C-X O. And soon...

Often you will be editing one window while using the other just for reference. Then, the command C-M-V
("R Scroll Other Window) is very useful. It scrolls the oiher window without switching to it and switching
back. 1t serolls the same way C-V duoes: with no argument, a whole screen up: with an argument, that many
lines up (or down, for a negative argument). With just a minus sign (no digits) as an argument, C-M-V scrolls

a whole screenful backwards (what M-V doees).

When you are finished using two windows, the C-X 1 command makes window two vanish. It doesn't

T S
T T T A Ve oree

(i

TS

M
)

SN

AT

S

oy o e AR

s AT

4

s

W
X

S

!

R

74

EMACS Manual for 11S Users

maitter which window the cursor is in when you do the C-X I; cither way window two vanishes and window

one remains. To make window one vanish and window two remain, give C-X 1 an argument.

The C-X 3 ("R View Two Windows) command is like C-X 2 but leaves the cursor in window one. That is,
it makes window two appear at the bottom of the screen but leaves the cursor where it was. C-X 2 is
cquivalent to C-X 3 C-X 0. C-X 3 is equivalent to C-X 2 C-X O, but C-X 3 is much faster.

Normally, the screen is divided cvenly between the two windows. You can also redistribute the lines

between the windows with the C-X = (*R Grow Window) command. It makes the currently sclecied

window get one line bigger, or as many lines as is specified. With a negative argument, it makes the selected

window smaller. ‘The allocation of space to the windows is always remembered and changes only when you
give a C-X ~ command.

After feaving two-window mode, you can still use C-X O, but the effect is slightly different. Window two
does not appear, but whatever was being shown in it appears, in window one (the whole screen). Whatever
bulfter used to be in window one is stuck, invisibly, into window two. Another C-X O reverses the effect of
the first. For example. if window vie shows buffer B and window two shows, butfer W2 (the ysual case), and

only window onc is visible, then after a C-X O window one shows buifer W2 and window two shows buffer
3.

16.1. Multiple Windows and Multiple Bulfers

You can vicw onc bufler in both windows. Give C-X 2 an argument as in C-U C-X 2 to go into window
two viewing the same buffer as window one. Although the same buffer appears in both windows, they have
different valucs of point, so you can move around in window two while window one continues o show the
same text. ‘Then, having found in - -indow two the place you wish to refer to, you can go back to window one
with C-X O to make your changes. Finally you can do C-X 1 10 make window two leave the screen. If you

are alrcady in two window mode, C-U C-X O switches windows carrying the buffer from the old window to
the new one so that both arc viewing the same buffer.

BulTers can be sclected independenmtly in cach window. ‘The C-X B command sclects a new buffer in
whichever window the cursor is in. The other window's buffer does not change. When you do C-X 2 and

window two appears it shows whatever buffer used to be visible in it when it was on the screen last.

If you have the same buffer in both windows, you must beware of trying to visit a different file in onc of
the windows with C-X C-V_ because if you bring a new file into this buffer, it will replace the old file in botk

windows. To view different files in the two windows again, you must switch buffers in one of the windows
first (with C-X B or C-X C-F, perhaps).

o evi—
- ——— T - = P, g E——

il B2 1 G L

A

b o i

I'wo Window Mode

i ,,.u"wmmwmmmmmm}'q
,

A convenient "combination” conmmand for viewing something in the other window is C-X 4 (*R Visit in
Other Window). With this command you can ask to sec any specified buffer, fiie or tag in the other window.
Follow the C-X 4 with cither B and a buffer name, I- or C-F and a file name, or 1" or *." and a tag name (See
section 21 [TAGS]. page 101.). "This switches to the other window and finds there what you specified. If you

were previously in onc-window mode. two-window mode is entered.

H
H

RN e e e

g

e

By Neppt wee

A e

=
=
=
=
=

i
|
?

EMACS Manual tor I'1S Users

LN 4 T LI B

A e T AR IRt yero s — ok
i s A, - " - i £

T AT e

% Narrowing 7 3
H i
2 E
H >
L |
17. Narrowing {
. 7}
C-XN Nariow down to between point and mark. -~ i
: C-XW Widen to view the entire buffer. -
, C-Xp Narrow down to the page point is in. i

"Narrowing™ means focusing in on some portion of the buffer, making the rest teriporarily invisible and ;

inacccssible.

When you have narrowed down to a part of the buffer, that part appears to be all there is. You can't sce

H

the rest, you ~an’t move into it (motion conunands won’t go outside the visible part), you can’t change it n

any way. However, itis noi gone, and if you save the file you are editing ol the invisible text wilt be saved. In

addition to sometimes making it casier to concentiate on a single subrowtine or paragraph by climinating

clutter, narrowing can be u.ed to restiict the tange of operation of a replace command,

The primay panowing command is C-X N (*R Sct Bounds Region). [t sets the ".irtual buffer
boundaries” a point and the mark, so that only what was between them reniains visible, Point moves to the

top of the now-yvisible range, and the mark is left ot the end, so that the region marked is unc wnged.

The way to und) nartowing is to widen with C-X W (*R Set Bounds Full). This makes all text in the
buffer accessible again,

Another way to narrow is to narrow to just onc page, with C-X P (*R Sct Bounds Page). Sce section 18
[Pages], page 79.

You can get information on what part of the buffer you are narrowed down to using the C-X =
comiand. Sece section 11.4 [Filling], page 47.

Note that the virtual buffer Soundaries are a powetful TECO mechanism used inteinally in EMACS in
many ways. While only the commands deseribed here set them so as you can sce, many others set them

temporaily using (~¢ TECO commands 1S VB4 and S V74, and restore thein hefore finishing.

i 11S Uscrs

Yhi
LY

MACS Manual 1

.
#

t

W

(a2

G
il @-;}'”.“- it

,;
‘d*‘ &

i Ay

R Eadaital

Commands for Mampulating Pages

18. Commands for Manipulating Pages

C-M-L Insert formfeced.

C-XC-p Put point and mark around this page (or another page}.
C-Xi Move point to previous page boundary,

C-X] Move point to next page boundary.

c-Xp Narrow down to just this (or next) page.

C-X1. Count the lincs in this page.

M-X What "age
Print current page and line number.,

Files are often thought of as divided into pages by the ASCI character formfced (t1.). For example, if a

file is printed on a line printer, cach page of the file, in this sense, will start on a new page of paper.

Most editors make the division of a file into pages extremely important. FFor example, they may be unable
to show more than onc page of the file at any time. EMACS treats o formfeed character just like any other
character. Tt can be inscited with C-Q C-1. (or, C-M-1), and dcleted with Rubout. "Thus, you e free to
paginate your file, or not. However, since pages aic ofien meaningful divisions of the file, commands are
provided to move over them and operate on them. If you happen to like seeing only one page of the file at a
time, you can usc the PAGE library for that. See section 18.1 [PAGE], page 80.

The C-X [(*R Previous Page) command moves point to the previous page delimiter (actually, to right

after it). If point starts out right after a page delimiter, it skips that one and stops at the previous one, A ;

numeric argument scrves as a repeat count. ‘The C-X J(*R Next Page) conumand moves past the next page
dclimiter.

The comn and M-X What Page prints the page and line number of the cursor in the echo arca. Theieisa
senarate comunand to print this information because it is likely to be slow and should not sfow down anything
ehe (The design of TECO is such that it is not possible to know the absolute number of the page you are in,
eacept by scanning through the whole file counting pages).

The C-X C-P command ("R Mark Page) puts point at the beginning of the current page and the mark at
the endd. “The page terminator at the end is included (the mark fofiows it). That at the frontis excluded (point

follows it). This command can be followed by a C-W to kill a page which is to be moved elsewhere,

A numeric atgument to C-X C-P is used to specify which page o go (o, relative to the current one. Ze¢ro

means the current page. Onc means the next page, and -1 means the previous one.

The command C-X P (*R Sct Bounds Page) narrows down to just one page. Everything before and after
becomes temporarily invisible and inarcessible (Sce section 17 [Narrowing), page 77.). Use C-X W to undo

this. Both page terminators, the preceding one and the following one, are exciuded from the visible region.

A a1 L1

Lt Wt v ot

"’“p‘ﬁwg. ¥ ‘4-"{‘?”;1 }t‘"i " ".lﬁ?’ B " !

R

80 EMACS Manual for I'T'S Users

Like C-X C-P, the C-X P command normally selects the current page, but allows you to specify which page
cxplicitly relative to the current one with a numeric argument. However, when you are alrcady narrowed
down to one page, C-X P moves you to the next page (otherwise, it would be a useless no-op). Onc cffect of
this quirk is that several C-X P's in a row get first the current page and then successive pages.

Just what delimits pages is controlled by the variable Page Delimiter, which should contzin a TECO scarch
string (See section 19.3 [TECO search strings], page 85.) which will match a page scparator. Normally, it
contains a string containing just t+1.. For an INFO file, it might uscfully be changed to +_t1.101_, which
means that cither a +_t1. or just a t_ (whatever scparates INFO nodes) should be a page separator. In any

case, page scparatots are recoghized as such only at the beginning of a line. The paragraph commands
consider cach page boundary a paragraph boundary as well.

The C-X 1. command (R Count Lines Page) is good for deciding where o break a page in two. it first

prints (in the ccho arca) the total number of lines in the current page, and then divides it up into those
preceding the carrent fine and those following, as in

Page has 96 Tines (72+25)

Notice that the sum is of T by one; this is cortect it puintis not at the front of a line.

18.1. Editing Only Cne Page at a Time

The PAGE library is meant to allow the handling of pages as discrete, often independent units, letting you

see only one page at a time, and providing commands to move between pages, split pages and join pages. it

contrives to show the nunber of the page you are fooking at in the mode line. You can also ask to sce a
"directory” of the pages in the file, or to insert it into the file, This is an extension of and replacement for the

facility provided by the C-X P comniand in standiud EMACS. 1t is an optional library because we do not
think it is necessarily an improvement.

The commands in the PAGE hibrary supplant and redefine commands in standard EMACS. "Therefore,

you cannot use them unless you give the command M-X Load Library$ PAGESer> explicitly. See section 22.2
Litaries], pege 112,

C-X] Move to next page.

C-X | Move to previous page.

¢-XC-p Move to page by absolute number,
c-Xp Split this page at point,

C-X1

Join this page to the next or previous one.
C-XW Sce the whale file again,

‘The most fundamental thing o do with PAGE is to go to a specific page. ‘This caa be done by giving the

page number as an argument o C-X C-P(*R Goto Page). If you give a number too big, the last page in the

e o WY

R TR SR LARL R LIRLI ML)

T

Conunands for Manipulating Pages

file is selected.

FFor convenience, C-X C-P with no argument when you are looking at the whole file sclects the page
containing point. When you arc looking at only one page. C-X C-P with no argument gocs to the next page

and with a negative argument goes to the previous page.

However, the main commands for moving forward or backward by pages are C-X [and C-X ("R Goto
Previous Page and “R Goto Next Page). These take a numeric argument (either sign) and move that many
pages.

When you want to go back to viewing the whole file instcad of just onc page, you can use the C-X W
(R Widen Bounds) command. ‘These are the sine characters that you would use in standard EMACS, but

they run a different function that knows to remionve the page number from the mode line.

The C-S (“R Inciemental Scarch) and C-R (*R Reverse Search) are redefined to widen bounds first and
narrow them again afterwards. So you can scaich through the whole file, but afterward sce only the page in
witich the scarch ended. In fact, PAGE goes through some touble to work with whatever search functions

you prefer to use, and find them wherever you put them,

To split an cxisting page. you could inscrt a t1., but unless you do this while sceing the whole file, PAGE
might get confused for a while. A way that is less tricky is to use C-X PP (*R Insert Pagemark} which inserts
the page mark, and narrows down to the sccond of the two pages formied from the old page. To get rid of a
page mark without worry, use C-X J ("R Join Next Page). [t gets rid of the page mark after the current page;

or, with a negative argument, gets rid of the page mark before this page.

A page mark is defined as CCRLID#L. if you set the variable PAGHE Flush CRLE to 1, a page mark is be
<CRIF>TI LCRLIS, which has the cffect of making the CRLE at the beginning of cach page invisibie. This
may be desirable for EMACS library source files. You can also specify some other string in place of t1.: the
value of Page Delimiter will be used. 11 Page Delimiter specifies multiple alternatives, the st alternative is

the one PAGE will insert, but all wilt be recognized. .

To see a list of all the pages in the file, cach (nmc represented by its first nonempty fine, use M-X View Page
Dircctory. [prints ont the first non-blank line on cach page, pieceded by its page number. M-X nsert Page
Directory inserts the same directory into the buffer at point. If you give it an aigument, it tries to make the
whole thing it a comment by putting the Comment Start string at the front of cach line and the Comment

Iind string 2t the end. |

If the variable Page Sctup Heok exists, PAGE will exccute its value as the function for placing PAGE's
functions on keys.

R AL

MACS Manual for I'I'S Users

I
)

[OpRERR

Replacement Commands

19. Replacement Commands

Global scarch-and-replace operations are not used as often in EMACS as they arc in other cditors, but
they are still provided. [n addition to the simple Replace operation which is like that found in most editors,

there is a Query Replace operation, which asks you, for cach occurrence of the patiern, whether to replace it.

19.1. Query Replace

To replace every instance of FOO with BAR, you can do M-X Replucc¢ FOO¢BAR e, Replacement is
done only after point, so if you want to cover the whole buffer you must go to the beginning first. Unless the
vatiable Case Replace is zero, an attempt is made to preserse case: give both FOQ and BAR in lower case,
and if a particular 1FO0 is found with a capital initial or all capitalized. the BAR which replaces it will be

likewisc.

If you give Replace (or Query Replace) an argument, then it insists that the occrrences of FOO be
delimited by break chatacters (or an end of the bufier). So vou can find only the word 1F00, and not FQO
when it is part of FOOBAR.

To 1estrict the replacement .o a subset of the buffer, set the region wround it and type C-X N ("N" for
"Narrow"). ‘This makes all of the buffer outside that region temporarily invisible (but the commands that
save your file still know that it is there!). Then do the replacement. Aftcrward, C-X W ("Widen™) to make

the rest of the buffer visible again. Sce section 17 [Narrowing), page 77.

If you are afraid that there may be some FOO's that should not be changed, EMACS can stilt help you.
Usc M-X Query ReplaceIFOO4BARLer>. ‘This displays cach 1°00 and waits for you to say whether to
replace it wiihia BAR. “The things you can type when you are shown a 1FOO are:

Space to replace the IFOO (preserving case, just like plain Replace, unless Case Replace is
7er0).

Rubout to skip to the next FOO without replacing this one.

Comina to replace this FOO and display the result. - You are then asked for anather input

character, except that since the replacenient has alrcady heen made, Rubout and
Spice are equivalent.
Alumode (o oxit without ¢aing any more replacemnents,
Periad 1o replace this FOO and then exit.
! o replace alt iemaining 1°00’s without asking (Replace actually works by calfing
Query Replace and pretending that a !V was typed in).
to po back to the previous FOO {or, where it was), in case you have made a mistake,
This works by jumping to ihe mark (Query Repluce sets the mark cach time it {inds a
1F00).
C-R to enter a recussive editing level, in case the 1FO0 needs to be edited rather than just

P T T PO L P LT

[rT——

w
b s

Ao e

il

L h 0 BRI

o

S

S T s B T e s

T

34 EMACS Manual for I'ES Users

replaced with a BAR. When you are done, exit the recursive editing level with
C-M-C.

Cw to delete the FOO. and then stait editing the buffer. When you are finished editing
whatever is to replace the FOO, et the recursive editing Ievel with C-M-C.

If you type any other character, the Query Replace is exited, and the character executed as a command. To
restart the Query Replace, use C-X Altmode which is a command to re-cxecute the previous minibuffer
command or extended command. See scction 5 [M-X], page 19.

‘Fhe first argument of Query Replace and Replace String is not simply a string; it is a kind of pattern, a
TECQ scarch string. Sce section 19.3 [TECO scarch strings], page 85.

19.1.1. Running Query Replace with the Minibuffer

Meta-% gives you a minibuffer pre-initialized with “MM Query Replacee”. ‘This is the casicst way to

invoke Query Replace. talso altows you to get Returas and Alunodes into the arguments.

With the minibuffer, Query Replace can be given a precomunta argument, which says that the second string

argument is actually a TFCO program to be executed to perform the ieplacement, rather than simply a string
to replace with,

-

When you invoke Query Replace from the minibuffer, the character C-] becomes special (because it is
special in TECO programs). In order to get a C-] into the scarch string or the replacement string, yotr must
use two of them. You can also use a C-] to quote an Alumade. In the minibuffer, Return has no syntactic
significance, so there is no need for a way to quote it. However, in order to insert any control characters into

the arguments, you need w quote them again with C-Q. So, to get C-Q C-X into the scarch string so as to
scarch fora C-X, you have to type C-Q C-Q C-Q C-X.

19.2. Other Search-and-loop Functions

Here are some other functions iclated to replicement. Their arguments are 'TECO scarch strings (Sce
section 19.3 [TECO search steings|. page 85.). ‘They all operate from point to the end of the bulfer (or where
C-X N stops them).

M-X Occur ¢ FOOLer
which finds all occurrences of FOQ alier paint. It prints cach line containing one. Wit an

argument, it prints that many lines before and afler each occurrence.

M-X How Many#00<cr>
types the number of occurrences of FOG after point.

M-X Keep Lines$:Q00<en>

B =

e Ll

TERMAE I s et 4

i

e, it

1 D

gy s I G s s AL L

o0 A0 1950 g e e ORI S H

ol

Attt AL E B b S SR ot mtniic nabar sl

AL

Replacement Commands

PR—————

kills all lines after point that don’t contain FOO.

M-X Flush Lines¢FOO<er>
kills all lines after point that contain FOO,

19.3. TECO Secarch Strings

‘Ihe first string argument to Replace and Query Replace is actually a 'TECO scarch string. ‘This means that
the characters C-X, C-B, C-N, C-0, and C-Q have special meanings. C-X matches any character. C-B
matches any "delimiter” character (anything which the word commands consider not part of 4 word, g
according to the syntax table. Sce section 22.4 [Syntax], page 115.). C-N negates what follows, so that C-N A
matches anything but A, and C-N C-B matches any non-delimiter. C-O means "or”, so that XYXY C-Q 777
matches either XYXY or 77.7. C-O can be used more than once in a pattern. C-Q quotes the following
character, in case you want to scarch for one of the special control characters. However, you can’t quote an

Altmode or a Return in this way because its specialuess is at an carlier stage of processing.

Some vartables are supposed (o e TECO search strings as their values. For example, Page Delimiter iy
suppaosed to be i scarch string to match anything which should start a page. This is so that you can use C-O to
match several alternatives. In the values of such variables, C-B, C-N, C-Q, C-Q, C-X and C-} e special, but

Altmode is not. C-B through C-X are quoted with a C-Q, and C-] is quoted with another C-].

MACS Manuat for I'T'S Users

-
.

I

b

N

IERIR U]

;” ™ A?
o

Editing Programs

Jar 0 Gt

20. Editing Programs

et A 1 W A 1

Special features for editing programs include autownatic indentation, comment alignment, parcnthesis

matching. and the ability to move over and kill balanced cxpressions. Many of these features are

J A D0 W it S

parameterized so that they can work for any programming language.

FFor each language there is a special "major mode™ which customizes EMACS slightly to be better suited to

cditing programs written in that language. These modes sometimes offer speciad facilitics as well.
Sce section 111 [Words]. page 43. Moving over words is useful for editing programs as well as text.
Sce section 11.2 [Paragraphs], page 44. Most programming funguage major modes define paragraphs to be

separated only by blnk fines and page boundaics. This makes the paragraph commands usctul for editing
programs,

Sec scction 21 [Togs]. page 101, The TAGS package can remember all the fabels or functions in a
multi-file program and find any one of them quickly.

20.1. Major Modes

o A ottt

When EMACS starts up, it is in what is called "Fundasental mode®, which means that the single and
double character commands are defined so as to be convenient in general. More preciscly. in Fundamental
mode every EMACS option is sct in its default state. For editing any specific type of text, such as Lisp code
or English text, you can tell EMACS to change the meanings of a few conunands to become more specifically
adapted to the task. This is done by switching from Fuadamental mode to onc of the other major modes.
Muost commands remain unchanged: the ones which usually change are Tab, Rubout, and Lincfced. In

addition, the commands which handle comments usce the mode 0 determine how comments are to be
delimited,

A A T s Pt

Sclecting a new major mode is done with an M-X command. Each major mode is the name of tiic funcidon

il

to select that mode. Thus, you can enter Lisp made by exceuting M-X Lisp (short for M-X Lisp Modc). The

i

major modes are mutaally exclusive; you can be in oniy one major mode at a time. When at top fevel,

A

W

EMACS always says in the mode line which major mode you arc in. You can specify which major mode

shuuld be used for editing a certain file by putting -*-mode named-*- somewhere in the first nonblank line
of the file. For eaample, this filc has -*-"Text-*-,

Mainy major modes redefine the syntactical propertics of characters appearing in the buffer. Sce
section 22.4 [Syntax], page 115.

R

e

EMACS Manual tor 1S Users

Most programming language major modes specify that only blank lines separate paragraphs. ‘This is so
that the paragraph commands do not became uscless. They also cause Auto Fill mode to use the definition of

‘I'ab to indent the new lines it creates. ‘This is because most lines are usually indented.

Major modes are standardly defined for the languages Lisp. Muddle, MEHDAS, Macsyma, BCPL., BLISS,
PASCAL., FORTRAN, TECO, and PL1.

There is also Text mode, designed for cditing English text, or input to text justifier programs. Sec
section 11 [Text]. page 43.

20.2. Compiling Your Program

The command M-X Compile<crd is used to compile the visited file. It knows how to compile it based on

the major mode: for exampie, in MIDAS mode, it works by invoking MIDAS,

The first thing M-X Compile doces is offer o save cach buffer. ‘This is because it is likely that all the

buffers contain parts of ihe same program you are about to compile.

Fhen your program is compiled by executing a string of DDT commands, Normually, the commands are
constructes from the visited file name and the major mode; for example, in MIDAS muode, the command
:MIDAS <filename>
would he used. When this is not sufficient, you can specify what 1o do by defining the variable Compile
Conuand to be o THFCO program to do the compilation. It could work by using the 1K command to pass

commnands to DT, The TECO program miusf usc t\ o exit.

I sume languages. all the files of a multi-file program must be compiled together, and the compiler must
be given all the files. or one particular file which specifics all the others. EMACS librarics are an exameple of
the fint sort, and MIDAS programs an example of the second sort. In such cases, cach of the files of the
program could define a Compile Command with a local modes list which specifics all the fiics, or the

appropriate one. See the fiie AEMACSECCL > for an cxample of duing this for an EMACS library.

Major modes which are not known to M-X Compile can work with it by sctting Compile Command. In
this 22 the value of Compile Command must be independent of the name of the file. When it is exccutey, it

can find (he filename to use in g-register 1.

b o 1 L

Editing Programs

20.3. Indentation Commands for Code
|

Tab Indents current line. }
Lincfeed Fquivaieni to Return followed by ‘Fab. !

M-~ Joins two lines, leaving one space between if appropriate. {

M-\ Deletes all spaces and tabs around point. :

M-M Moves 1o the first nonblank character on the line. !

Most programming languages have some indentation convention. For Lisp code, lines arc indented
according to their nesting in parcatheses. For assembler code, almost all lines start with a single tab, but some
have one or more spaces as well. Indenting TECO code is an art rather than a science. but it is often useful to

indent a line uirder the previous onc.

e o4

D o

The way to request indentation is with the Tab command. Fach major mode defines this command to

perform the sort of indentation appropriate for the particular language. In Lisp mode. Tab aligns the line

o Q5 R &

according to its depth in parentheses. No matter where in the line you are whea you type-Tab, it aligns the

linc as a whole. In NIDAS maode, Tab inserts a tab, that being the standard indentatioa for assembly code.

W

In TECO mde, Tab realigns the current line to match a previous line. PL1 mode (Sce the file INFO;
EPLL 2.) knows m great detail about the keywords of the language so as to indent lines aiccording to the

nesting structure,

The command Linefeed ("R Indent New Line) does a Return and then does a Tab on the next line. Thus,
Linefeed at the end of the line mukes a fullowing blank linc and supplics it with the usual amount of
indentation, just as Return would make an empty line. Linefeed in the middle of a line breaks the Tine and

supplics the usual indentation in front of the new line.

W0 e

e

The inverse of Lincfeed is Meta—~ or C-M-~ (*R Delete Indentation). This command dcletes the
indentation at the front of the current line, and the line boundary as well. They are replaced by a single

space, or by no space if before a ") or after a "(", or at the beginning of a line. To delete just the indentation

of a linc, go to the beginming of the line and use Meta-\ ("R Delete Horizontal Spacc). which deletes all

spaces and iabs around the cursor.

To insert an indented line before the current one, do C-A, C-0O, and then Tab. To make an indented line

after the current once, use C-13 Lincfeed.

To move over the indentation un a line, do Meta-M or C-M-M (R Back to Indentation). These

conimands. given anywhere on a line, pssitien the curser at the first nonblank character on the line.

EMACS Manual for 1'1'S Users

20.4. Automatic Display Of Matching Parentheses

The purpose of the EMACS parenthesis-matching feature is to show automatically how parcentheses
balance in text being typed in. When this feature is enabled, after a close parenthesis or other close bracket
chidracicr is inseried the cursor automaticaily moves for an instant w the open which balances the newly
inserted character. ‘The cursor stays at the open parenthesis for a second before returning home. if you don't
type any more commands during that time. if you type more commands before the sccond is up., ENMACS

won't wait the whole second.

It is worth emphasizing that the real lozation of the cursor, the place where your type-in will be inserted, is

not affected by the close parenthesis matching feature. It stays afier the close parenthesis. where it would

a

nonmally be. Only the spot on the screen moves away and back. You can type ahead ficely as if the matching

e s | o

feature were not there. In fact, if you type fast cnough, you won't see the cursor meve. You must patise after

typing a cluse parenthesis to see the apen parenthesis.

Ihe variable Displyy Matching Paren controls parenthesis display. 11 it is zero. the feaiurc is disabled. If

U o s B e

the variable is nonzero, then its absolute value is the number of scconds for the cursor to stay ot the upen
parcathesis before coming back 1o its real focation. The sign of the vardable is abso significant: il it s negative,
then the open parenthesis is show n only if it s alrcady on the scre~n. If the variable is positive, then EMACS
will actually recenter the window (o show the text around the opcen parenthesis. The default setting of the

variable is -1.

An additional parameter is whether EMACS should wam you by ringing the bell if you type an
unmatched close parenthesis. The defauit is to warn you if you arc cditing a language in which parentheses
arc essential, like Lisp. but not to do so for languages in which parcatheses are not so crucial. “This is
contrailed by the variable Permit Unmatched Paren. When it is 1, you arc never wamed (they arc always
"peimitted”). When itis -1, you are wamed only in Lisp mode and similar modes (this is the default). Note
that these modces operide by lucally sctting the variable to 1 if it was -1, When it is 0, you are wamed
regardless of the major mode. Unmatched parens are afuays “permitted” in that EMACS will never refuse to

insert them.

Whilc this feature was intended primarily for Lisp. it can be used just as well for any other kinguage, and it
is not dependent on what major mode you arc in. 1 is expected that you wouldn't want it in Text maode, so
Text miode sets the variable Display Matching Paren locally to zero. I you do want the feature in Text mode,
you can cicats o Text Mode Hook sariable which sets the variable back to -1, Sce the file INFO:CONV >,

node Hooks. for more info on Text Mode Hook. e way to control which charcters trigger this feature is

N

with the syntax table. Any character whose Lisp syntax is)" will cause the maiching characier with syntax

“(" to be shown. Most major modes automatically sct up the syntax table (Sce section 22.4 {Syntax],

o e T e

liditing Programs 9l

L Tt @

page 115.).

The syntax table also controls what is done with the casc of "mismatched” parens, as in [)". ‘The third
slot in a close parenthesis character's syntax table entry should be the proper matching open parcnthesis
character, if you want this feature turned on. If that slot contains a space instcad, then any open parenthesis
character is considered a legitimate match,

‘The implementation of this feature uses the TECO flag FS ~R PAREN®. Sce section 22.5 {FS Flags],
. page 117,

20.5. Manipulating Comments

The comment commands insert, kill and align comments. ‘There are also commands for moving through

cxisting code and inserting comments,

C- Insert or align comment. H
M-: e same.
C-M-; Kill comment.
C-X Set comment column,
M-N Move to Next fine and insert comment. ;2
M-p Move to Previous line and insert comment. §
M-] Continuc a comment on a new line,

M-linefeed ‘Thic same.

The command that creates a comment is Control-; or Meta-; (*R Indent for Comiment). It moves to the
end of the line, indents (o the comment column, and inserts whatever string EMACS believes conunents are
supposed to start with (normally ";"). 1f the line goes past the comment column, then the indentation is done
to a suitable boundary (usually, a multiple of 8). [f the language you are editing requires a teiminator for
comments (other than the end of the line), the terminator is insertcd too, but point goes between the starter

and the terminator.

Control-; can also be used to.align an existing comment. If a linc alrcady contains the string that starts
comments, then C-; just moves point after it and indents it to the right place (where a comment would have

been created if there had been none).

Iiven when an existing comment is properly aligned, C-: is still useful for moving directly to the start of the

comment.

C-M-; (*R Kill Cominent) kills the comment on the current ling, if there is one. ‘The indentation before
the start of the comment is killed as well. i there does not appear to be a comment in the line, nothing is
done. Since killed text can be reinserted with C-Y, this command is uscful for moving a comment from one

‘ %
2
2
s

92 EMACS Manual for I't'S Users

line to another.

20.5.1. Multiple Lines of Comments

If you wish to align a large number of comments, vou can give Control-; an argument and it indents what
comments cxist on that many lines, creating nonc.” Point is left after the last line processed (uniike the

no-argument case).

When adding comments to a long stretch of existing code, the commands M-N (R Down Comment
Line)and M-P (*R Up Comment L.inc) may be useful. ‘They are like C N and C-P except that they doa C-; '
automatically on cach line as you move to it, and delete any empty comment from the line as you icave it.
Thus, you can use M-N to move down through the code, putting text into the comments when you want o,

amd allowing the comments that you don’t fill in to be removed because they remained empty.

If you ate typing a comment and find that you wish to continue it on another line, you can use the
command Meata-J or Meta-Linefeed (*R 1ndent New Connmient Line), which terminates the comment you
arc typing. creates or gobbles a new blank line, and begins a new comment indented under the old one.
When Auto Fill mode is on, going past the fill colums while typing a comment causes the comment to be
continued in just this fashion. Note that if the next line is not blank, a blank line is crcated, instead of putling

the next line of the comment on the next Lne of code. T'o do that, use M-N,

20.5.2. Double and Triple Semicolons in Lisp ",

=

In Lasp code there are conventions for comments which start with more than one semicoion. Comments

which start with two semicolons aie indented as if they were lines of code, instead of at the comment column.,
Cuomments which start with three semicolans are suppaosed to start at the feft margin. EMACS understands
these cunventions by indenting a double-semicolon cominent using Fab, and by not changing the indentation
of a tnple-semicolon comment at all. (Actually, this rule applics whenever the comment starter is a single
character and is duplicated). Notc thai the @ program considers a four-semicolon comment a subtitle in

1.isp code.

20.5.3. Options Controliing Comments

The comment columan is stored in the variable Comment Colamn. You can set it to a number explicitly.

!

”,,uw"ﬂllum.
—-—

n

“

Alternatively, the command C-X ¢ (*R Sct Conment Colwnn) sets the conunent column to the colunm
point iy at. C-UC-X ; sets the comment column to mateh the kst comment before point in the bulfer, and

then does a Meta-: to align the current line's comment under the previous one,

F\‘1
I

Editing Programs

ITRTC IR RIE Tk o) cEach bt u‘}‘q}‘}‘n,ﬁ, '
.

Many major modes supply default local values for the comment column. In addition, C-X ; automatically

ik

makes the variable Comment Column local, Otherwisce, if you change the variable itself, it changes globally
(for all buffers) unless it has been made local in the selected one. Sce section 22.6 [1L.ocals), page 118.

‘The string recognized as the start of a comment is stored in the variable Comment Stait, while the string
uscd to start a new comment is kept in Comment Begin (if that is zero, Comment Start is used for new

commeats). ‘This makes it possible for you to have any ;" recognized as starting a comment but have new
comments begin with *;; ** .

The string used to end a comment is kept in the variabie Comment End. In many languages no comment

end is needed as the comment extends to the end of the line. Then, this variable is a null string,

20.6. Lisp Mode and Muddle Mode

Lisp's simple syntax makes it much casier for an editor to understand, as a result, EMACS can do more for

Lisp, and with less work, than for any other language.

Lisp programs should be cdited in i.isp mode. In this mode, Tab is defined to indent the current line
according to the comentions of Lisp programming style. } does not matter where in the line Tab is used; the
effect on the line is the same. "The function which docs the work is called ~R Indent for Lisp. Linefeed, as

usual, does a Return and a Tab, so it moves to the next ine and indents it.

As in most modes where indentation is likely to vary from line to line, Rubout is redefined to treat a tab as
if it were the equivalent number of space ("R Backward Delete Hacking Tabs). This makes it possible to rub
out indentation onc position at a time without worrying whether it is made up of spaces or tabs.

Control-Rubout does the ordinary type of mubbing out which rubs out a whole tab at once.

Paragraphs arc dcfined to start only with blank lincs so that the paragraph commands can be useful. Auto
fill indents the new lines which it creates. Comments start with *:". In Lisp mode, the action of the

word-maotion conumands is aftected by whether you are in atom word mode or not.

‘The I EDIT library atlows EMACS ind Lisp to communicate, telling Lisp the new definitions of functions
which you editin EMACS. Sce the file INFO;LEDIT 5.

The language Muddle is & variant form of Lisp which shares the concept of using parentheses (of various
sorts} as the main syntactical construct. It can be edited using Muddle mode, which is almost the same as Lisp

mode and provides the same featurcs, differing only in the syntax table used.

| EmLm e e,

EMACS Manual for I'I'S Users

20.6.1. Moving Over and Killing Lists and S-expressions

C-M-F Move Forward over s-cxpression.

C-M-B Move Backward.

C-M-K Kill s-cxpression forward.

C-M-Rubout Kill s-expression backward.

C-M-U Move Up and backward in list structure.
C-M-("'he same.

C-M-) Move up and forward in list structure.
C-M-D Move Down and forward in list structure,
C-M-N Move forward over a list.

C-M-p Move backward over a list.

C-M-T Transpose s-expressions.

C-M-@ Put mark after s-cxpression.

M-(Put parentheses around next s-expression(s).
M-) Move past next close parenthesis and reindent,

By convention, EMACS commands that deal with balanced parentheses are usually Control-Meta-
characters. They tend to be analogous in function t their Control- and Meta- cquivalents. ‘These commands
are usually thought of as pertaining to Lisp, but can be useful with any language in which some sort of

parentheses exist (including English).

i To move forward over an s-cxpression, use C-M-1° (*R FForward Sexp). if the first non-"uscless” character
after pointis an "("', C-M-I- moves past the matching)", 1€ the first character isa ")", C-M-F just moves past

it. 1f the character begins an atom, C-M-I< moves to the atom-break character that ends the atom. C-M-F

with an argument repeats that operation the specified number of times: with a negative argument, it moves

backward instcad.

The command C-M-B (*R Backward Sexp) moves backward over an s-expression; it is like C-M-F with
the argument negated. If there are *"*-like characters in front of the s-expression moved over, they are moved

over as well, Thus, with point afier " "1F00 ", C-M-B leaves point before the ™™, not before the "F*.

These two commands {(and most of the comands in this scction) d= not know how to deal with the
presence of comments. Although that would be casy to fix for forward motion, for backward motion the
syntax of Lisp makes it ncaily impossible. Comments by themselves wouldn't be so bad, but handling
conunents and "I both is impossible to do locally. In a line * ((1°F00 ;| BAR ", are the open parentheses
inside of a "] ... |" atom? 1 do not think it would be advisable to make C-M-1¥ handle comments withowt

making C-M-B handle them as well

{For this reason, two other commands which move over lists instead of s-expressions are ofien useful. ‘They -
are C-M-N (*R Forward List) and C-M-P (R Backward List). "They act like C-M-I- and C-M-B cxcept that

they don't stop on atoms; after moving over an atom, they move over the next expression, stopping after

£
£

RRR S T L MWM}Q;"""M" oy

kditing Progroms

moving over alist. v ith this command, you can avoid stopping after all of the words in a comment.

Killing an s-expression at a time can be done with C-M-K and C-M-Rubout (*R Forward Kill Sexp and

~R Backward Kill Sexp). C-M-K Kkills the characters that C-M-F would move over, and C-M-Rubout kiils
what C-M-B vcould move over.

C-M-F and C-M-B stay at the sume level in parentheses, when that’s possible. T'o move up one (or n)
levels, use C-M-{ or C-M-) [*R Backward Up List and ~R Forward Up List). C-M-(moves buckwards up
past onc containing "(". C-M-) moves forwards up past one containing ')". Given a positive argument, these
commands move up the specified numiber of levels of parentheses. C-M-Ui is another name for C-M-(, which
is casicr to type. especially on non-Mcta keyboards. I you use that name, it is uscful to know that a negative
argument makes the conunand move up-f'urwurds, like C-M-).

To muove down in dist structure, use C-M-D (*R Down List). Itis ncarly the same as scarching for a "(".

A somewhat random-sounding command which is nevertheless casy to use is C-M-T (*R "I'ranspose
Sexps). which moves the cursor fo-ward over one s-expression, dragging the previous s-expression along. An
argament serves as a repeat count, and - negative argument drags backwards (thus canceling out the cffect of

a positive argument). An argument of zeso, rather than doing nothing, transposes the s-expressions at the
point and the mark

To make the region be the aext s-expression in the buffer, use or C-M-@0 (*R Mark Sexn) which scts mark
at the same place that C-M-F would move to. C-M-@ takes arguments fike C-M-I°. In particular, a negative

argument is useful for putting the mark at the beginning of the previous s-expression.

‘The commands M-([*R Insert () and M=) [*R Move Over)} arc designed for a style of editing which
keens parentheses balanced at all times. M-(inserts & pair of parenthesces, cither togeiher as in ()", or, if
given an argument, around the next several s-expressions, and leaves point after the epen parenthesis.
instcad of typing "(FOO)", you can type M-(IFOO, which has the same effect except for leaving the cursor
before the close parenthesis. “Then you type M-), which moves past the close parcithesis, delcting any
indentation preceding it (in this example there is none), and indenting with Lincfeed after it.

‘The list commands’ undesstanding of syntax is completely controlled by the syntax table. Any character

can, for examiple, he declared to act like an open parenthesis. Sce section 22.4 [Syntax), page 115,

20.6.2. Cornmands for Manipulating Defans

C-M.C-M-A Move to beginning of defun.
C-M-.C-M-E Move to end of defun,
C-M-H Put region a ound whlole defun.

e i i

13

B o

A T 5 b e i 5 e e e e 410 18 2 i b i

bl e i

SANMA B Rk A 5

Cdm s mu

[T

W o By o

RY

AR R 50 <

96 EMACS Masaal for I'YS Users

In EMACS, a list at the top level in the buffer is called a defun, regardless of what function is actuatly
called. because suclh lists usually call defun. There are EMACS commands to move to the beginning or end
of the current defun: C-M-f (*R Beginning of Defun) moves to the beginring, and C-M-] (*R End of
Defun} moves to the end. If you wish to operate on the current defun, use C-M-11 (*R Maik Defun) which
puts point at the beginning and mark at the end of the current or next defun. Alterni. » names for these two

commands are C-M-A for C-M-[and C-M-E for C-M-]. ‘T'he alternate names are casier to type on many
non-Meta keyboards.

20.7. Lisp Grinding

I'he best way to keep FLisp code indented properly is to use EMACS to re-indent it when it is changed.
FMACS has commands to indent properly cither 2 single line, a specified number of lines, o1 ali of the lines
inside a single s-expression.

Tab In Lisp mode, reindents line according to parenthesis depth.
Lincfeed Fquivilent o Return followed by Tab.

M-~ Juin two lines, fcaving one space between them if appropriate.
C-M-Q Reindent all the lines within one list.

C-M-G Grind a list, moving code between lines.

‘The basic indentation function is R Indent for Lisp, which gives the current line the correct indentation
as detenmnined from the previous lines' indentation and parenthesis structure. This function is noianally found
on C-M-"Tab, but when in Lisp mude it is placed on Tab as well (Use Meta-Tab to insert a wb). When given
al the beginning of a line, it leaves point alter the indentation; when given inside the text on the line, puint
renains fixed with respeci to the characters around it

When catering a large amount of new cade, it becomes uscful that Linefeed (*R Indent New Line) is

cquivident to a Return followed by a’lab. In Lisp maode, a Lincfeed creates or moves down onto a blank line,
and then give it the appropriate indentation,

"T'o juin two lines together, use the Meta-~ or Control-Meta-~ command (*R Delete Indentation), which is
approximately the opposite of Lincfeed. It deletes any spaces and tabs at the front of the cusrent line, and
then deletes the line separator before the line. A single seacz is then inserted, iF EMACS thinks that onc is

needed there. Spaces are not nceded before a close parenthesis, or after an open parenthesis.

I you are dissatisfied about where "Tab wants to place the second and later lines of an s-expression, ycu can

override it. If you alter the indentation of one of the lines yourself, then Tab will indent successive lincs of

the same list to be underneath it. This is the right thing for functions which Tab indents unacsthetically. Of

course, it is the wrong thing for PROG tags (if you like to un-indent them), but it's impossible to be right for
both.

wiu o v bl

A U

ot o L 8 e b i b KL o0

bl ot e sl ot kb bt

b bk bk S

e

Editing Programs

When you wish to re-indent code which lias been altered or moved to a different Ievel in the list structure,
you have several commands mvailable. You can re-indent a specific number of lines by giving the ordinary

indent command (Tab, in Lisp made) an argument. ‘This indents as many fines as you say and moves to the
line following them. ‘Thus, if you underestimate, you can repeat the process later.

You can re-indent the contents of a single s-expression by positioning point before e heginning of itand
yping Cantrol-Mcez:-Q (*R Indent Sexp). The line the s-expression starts on is not re-indented: thus, only

the reladve indeniation with in the s-expression, and not its position, is changed. To correct the position as
well. type a Tab before the C-M-Q.

Another way to specify the range to be re-indented is with point and mark. ‘The command C-M-\

{*R indent Region) applies Tab to cvery line whase first character is between point and mark. In Lisp mode.
this does a Lisp indent.

A wore powerful grind command which can move text between lines is C-M-G (*R FFormat Code). You

might or might not like it. It knows in different ways about Lisp code and Macsyma code.

20.8. Fditing Assembly-Language Programs

M-X AHIDAS Made is designed for cditing programs written in MIDAS or ether PDP-10 oy FDP-11

assemblers. In MIDAS made, comments start with *;", and <" and “>" have the syntax of parentheses. In

addition, there are five special commands which understand the syntax of instructions and labels. These
commands are:

C-M-N Go to Next fabel.
C-M-P Go tu Previous label.

C-M-A Go to Accumulator ficld of instruction.
C-M-E Go to Effective Address field.

C-M-D Kill next word and its Delimiting character,
M-{ Move up to previous paragraph boundary.
M-] Move down to next paragraph boundary.

Any line which is not indented and is not just a comment is taken to contain a label. “The label is
cverything up to the first whitespace (or the end of the linc). C-M-N (*R Go to Next Label) and C-M-P
(*R Go to Previous Label) both position the cursor right at the end of a lubel; C-M-N moves forward or
down :nd C-M-P moves backward or up. Al the beginning of a line containing a label, C-M-N moves past it
Past the label on the same line, C-M-1" moves hack to the end of it. 1T you kill i couple of indented lines and

wani to insert thent rigit afier a label, these conmands put you at just the right place.

C-M-A {*R Go to AC Field) and C-M-E (*R Go o Address Field) move to the beginning of the
accumulator (AC) or effective address ficlds of a PDP-10 instruction. “They always stay on the same linc,

e muinaien o 1

“
Wt il Wi Wt M i W

KO % Wt i L i

e o

98 EMACS Manual for FI'S Users

moving cither forward or backward as appropriate. If the instruction contains no AC ficld, C-M-A pusitions
1o the start of the address ficld. If the instruction is just an opcode with no AC ficld or address field, a space is
inserted after (the opcode and the cursor left after the space. In PDP-11 programs, C-M-A moves to the first

operand and C-M-1: moves to the second operand.

Onee you've gone to the beginning of the AC field you can often use C-M-D (R Kill terminated Word)
to kill the AC name and the comma which terminates it. You can alss use it at the beginning of a ling, to kill
a label and its colon, or after a line’s indentation to kill the apcode and the following space. ‘This is very
convenient for moving a label from one line to another. In general, C-M-1) is equivalent to M-1) C-D, except
that all the characters are saved ona the kill ring, together. C-1), a "deletion” command, doesn’t save on the

kill ring if not given an argument.

‘The M-[and M-] commands are not, strictly speaking, redefined by MIDAS mode, since they always go up
ar down to a paragraph boundary. However, in MIDAS mode the criterion for a paragraph boundary is
changed by sctting the variable Paragraph Delimiter (See scction 11.2 [ragraphs], page 44.) so that only
blank lines (and pages) delimit paragraphs. So, M-[moves up to the previous blank linc and M- moves to the

ficxt one.

20.9. Major Modes .or Other Languages

MATSYMA mode redefines the syntax of words aad s-expressions in an attempt to make it casier o move
ever MACSYMA syntactic units. In addidon, the C-M-G "grind” command is told to grind text as
MACSYMA instead of as Lisp. Alse, the syntax of MACSYMA comments is understood.

THECO mude is good for cdi(iné EMACS library sourcc files. It makes Tab be ~R Indent Nested (sce its
seif~decumentation). Commients start with "1* * and end with 1", In addiuon, the PURIFY library which
contains massy things useful for processing library sources (including the connnands to compile them) is
loaded. M-" and M-" arc connected to functions “R Forward T1ECO Conditienal and ~R Backward 'TECO
Conditional which move forward and backward over balanced ‘TECO conditionals. In "THCO mode on a
terminal with a Mcta key, 't may be useful to sct the TECO flag 1S CTLMTA¢ which causes Control-Mcta
commands to insert Control characters. Sce section 22.5 [FS Flagsl, page 117,

P 1 mode is for editing PL1 code, and causes Tab to indent an amount hased on the previous statement
type. The budy of the implementation of PLT miende is in the §ibrary PLL which is loaded antomatically when

necessary, See the file INFOUEFPLL O,

PASCAL. mode is shinilar to PLI mode, for PASCAL. Tt is in the library called PASCAILL. Sce the file
INFFO:IEPASC >.

L

b
W
v

i

I

=
=

w b o
T A S mnmmmmmﬁ
P

Kditing Programs

‘There are also modes for BLISS, BCPI.
the libraries themsclves. Any volunteers?

%

and FOR'TRAN, but no documentation for them except that in

PRETYN

EMACS Manual for 1S Users

R, m..,.m..n..m,.mmmw,Wwwmmrw?ﬂ‘“‘”‘“m% ""

The TAGS Package. 101

21. The TAGS Package.

The TAGS package remembers the locations of the function definitions in a file and cnables you to go
dircctly to the definition of any function, without scarching.the whole file,

‘The functions of scveral files that miake up one program can all be remerbered together if you wish; then

the TAGS package will automatically sclect the appropriate file as well.

21.1. How to Make a Tags File for a Program

‘To use the TAGS package, you must create a tag table for the text file or files in your package. Normally,
the tag table does not reside in any of those files, but in a separate tag table file which contains the names of
the tent files which it describes. Tag tables are generated by the TAGS program. The same program can be
used to update the tags file if it becomes very far out of date {slight inaccuracies do not matter). Vag tables for
INFQ files wotk differently; the INFO file coatains its own tag table, which describes only that file. Sce
section 21.8 [INIFO). page 108, for how to deal with themn.

‘The normal moe-¢ of operation of the JTAGS program i to read in an existing tags £le and update it by
rescanning the source files that it describes. ‘e old tag table file itself tells “TAGS which source files to
process. When muaking a1 new tag table you must start by making a skeleton. Then “TAGS is used to turn the

skeleton into an accurate tag tible.

A skeleton tag table is like a real one except that it is emply: there are no tags in it. It contains exactly this
much data, for cach source file that it is going to describe:

<filenames>
0,<language>
t

The languages that “TAGS undenstands now arc TECO, LISP, MIDAS, FAIL, PALX. MUDDLE,
MACS¢MA, TI6. and R. MIDAS will do for MACRO-10 files. Any incompletely spccil';c-d filenames will
default to > and to the dircctory on which the tags file itself is stored. “The 0" must be present, since JTAGS
expecds that there will be a number in that place and will be completely confused if there is not. The CRLE

after cach t_ also must be preseat. You can amit both the last t_ and its CRLIF together, however.

Thus, a skeleton tags file for the files EMACS;USRCOM > and EMACS TAGS > would look like

i
AT

bl

¢ e

s g i | bl

ey

iy
i

ity

el

102 EMACS Manual for I'T'S Users

EMACS :USRCOM >
8,TECO

t—

EMACS ; TAGS >
0,TECO

t

If this were written out as EMACS:EMACS TAGS, you could'then do
:TAGS EMACS:EMACS (default N2 is TAGS)
which would tell “TAGS to read i the tags file. and write back an up-to-date tags file for the sume sct of
source files. Te updaie the tags file because fots of changes have been made, the same command 1o the
“I'AGS program will work. Scc section 21.6 [1Edit]. page 106, for info on adding. deleting. or renaming files in
cxisting tags files.

21.2. tlow {o Tell EMACS You Waat to Use TAGS

Before you can use the TAGS package, vou must tefl EMALS dic sume of the tags file you want 1 use.
This is done with the command
M-X Visit Tag Table¢ <filenames> <cr>
The N2 of "FAGS™ nced not be mentioned.

EMACS can only know about onc tag table file at a time. so doing a sccond M-X Visit Tag Table causes

the first one to be fergotien (or written back if you have added definitions to it).

Giving M-X Visit Tag Table a nonzero numeric argument, asin
1 H-X Visit Tag Table¢ <filenames> <cr>
has the additional cffect of seiting the variuble Tags Find File nonzers, which causes tie TAGS package 10
use Find File rather than Visit FFile when it needs to switch fifes. “This causes all the fites o comain resident in
the FMACS. in diffcrent buffers. In the default mode, visiting a tag in a dilferent fiie read it in on 1op of the
old file. in the same bulfer {but i* offers to write vut clanges if there are any). Warning: you can casily run

out of wldress space by making too many buffers, this way.

Visit Tag "Table is essentially cquivalent to sciecting the buffer "*TAGS*™™ and visiting the Lag table file in
that buffer, then retuming to the previously sciccted buffer. Aftervands, M-X List Buffers will show the
buffer *TAGS* visiting that file. “The only difference is that Mz}‘(Visit Tag Table causes the ont of cere
portions of the TAGS package to be lsaded.

%

|
|

‘The FAGS Package. 103

ot L B 8 A Ul L

21.3. Jumping to a Tag

P wwamwwmww

To jump to the definition of a function, use the command Meta-Period <tag name> <cr>. You will go
straight to the definition of the tag. 1f the definition is in a different file then TAGS will visit that file. 1fit is
. in the same file, TAGS will Ieave the mark behind and print "~@" in the ccho area.

If Meta-Period is used before M-X Visit Tag Tuble has been done, it will ask for the nime of a tag table
file. After you type this name and a <crd, you type the name of the tag as usual.

You do not need to type the cemplete name of the function; any substring will do. But this implics that
sontetimes you won't get the function you intended. When that happens, C-U Meta-Period wil! find the
"next” function matching what you typed (next, in the order of listing in the tag table). Thus, if you wanted
to find the definition of X-SET-TYPE-1 and you said just TYPE-1, you might find X-READ-TYPE-1 instead.
You could then type C-U Meta-Period’s until you reached X-SET-TYPE-1.

If you want to make sure you reach a precise function the first time. you should just include a character of
context before andg after its name. Thus, in a Lisp program, put a space before and after the function name.

In a MIDAS program, put alincleed before it and a colon afier.

21.4. Other Operations on Tag Tables

21.4.1. Adding a New Function to a Tag Table

When you define a new function, its location doesn't go in the tag table automatically. ‘I'hat’s because
EMACS can't tell that you have defined a function unless you issue the command to say so by invoking the
function "R Add Tag. Since the operation of adding a tag to a tag table has proved not to be very necessary,
this function no longer placed on any character, by defauit. You can invoke with M-X or place on a key if

you like, I-rom this section, let's assume you have placed it on C-X Period.

When you type the command C-X Period, the pointer should be i the line that introduces the function
definition, alter the function name andd the punctuation that ends it. "Thus, in a Lisp program, you might type
“(DEFUN FOO " (note the space after 1FO0) and then type the C-X Perind, [n a MIDAS program, you
might give the C-X Period after typing "FOO:". Ina TECO program in EMACS format, you might type C-X
Petiod after "1Set New Foo:t”, '

C-X Period maodifics only the copy of the tag table loaded into EMACS. To modify the tag table file itself,
you must cause it to be written out. Do this by selecting the buffer *FAGS* and saving it with C-X C-§, or
with M-X Save All Files. ‘There is also a function M-X 7 Save Tag Table for doing it.

-

e

- s i

—
S v e T e e

gy POE g o a g ey

EMACS Manual for I'FS Users

Although local modifications to a file do not degrade the efficiency of the TAGS package or require that
the 1ag table be updated with :'TAGS, moving a functinn a great distance make make it much slower to find
that function. In this case, you can "add” the function to the tag-table with C-X Period to give the table its
new ication. Or you can just run J'TAGS again to update everything, asis usttaily done.

21.4.2. How to Process All the Files ina Tag Table

‘The TAGS package contains a function M-X Next File which visits, one by one, all the files described by
the selected tag table. ‘This is useful when there is something to be done to all of the iles in the package. To
stant off the sequence, do C-U 1 M-X Next File, which visits the first file. When you are finished operating
on one file, do M-X Next File (no argument) to see the next. When all the files have Been processed, M-X
Next File4 gives an crror.

The files of the package are visited in the order that they are mentioned in the tag table, and the current
place in the sequence is remembered by the pointer in the buffer *FAGS* which holds the tag table. ‘Thus, if
you visit i tag in a different file in the middle of a M-X Next File sequence, you will screw it up unless you
retwin to the proper file again by visiting a tag (or go into the bulfer *TAGS* and reset the pointer).
However, visiting any other files dircctly, not using TAGS, does not interfere with the sequence, and the next
M-X Next File wiil go just where it would have gone.

Next File is also uscful as a subroutine in functions that wish to perform an automatic transformation (such
as a Query Replace) on each file. Such functions should call Next File with a precomma argument as in
LM(M.M Next Filed4) or LIM(M.M Next File¢). ‘The precomma argumient tells Next File to return 0 instead
of giving an crror when there are no more files to process. Normally, it returns -1.

Here is an example of TECO code to do a Query Replace on all of the files listed in the visited tag table:

IM(M.M Next Filet¢)
< M{M.M Query Replaced¢)fO0¢BAR®
1,M(M.M Next Filed);>

‘Fags Scarch and Tags Query Replace (see below) both work using Next File.

21.4.3. Multi-File Searches and Replacements

"The TAGS package contains a function Tags Scarch which will scarch through all of the files listed in the
visited tag table in the order they are listed. Do M-X "Fags Scarch#<string><cr> t find every occurrence of
<string>. <string> is a TECO scaich string in which special 'TECO search characters such as 1O, tX, tN, 18,
and tQ arc allowed. Sce section 19.3 [THCO Scarch Strings], page 85.

e

s e e T L eemend Sepa e T TR R eI
A i e el = T e ==]

‘The I'AGS Package.

When M-X Tags Scarch rcaches the end of the buffer, it visits the next file automatically, iyping its name

in the ccho area. As soon as M-X Tags Scarch finds one occurrence, it returns. But it defines the command
Control-Period to resume the scarch from wherever point is.

Warning: use of Tags Scarch after sctting Tags Find File to 1 can create more buffers than EMACS can
handle. This results in an URK “Running out of core” error. After the error, you might be at 'ljl-ICO
command level, outside of EMACS. If your type-in is echoed at the bottom of the screen, this has happenced.
You should immediately type MM Kill Some Buffersé ¢, kill some, and then do :M..1.4¢ to reenter EMACS.

M-X ‘Tags Query Replace does a Query Replace over all the files in a tag table. Like M-X Tags Scarch, it

sets Control-, up to be a command to continue the Query Replace, in case you wish to exit, do some editing,
and then resumice scanning.

The library MQREPL cnables you to use Next File to repeat a sequence of many Query Replace
commands over a set of files, performing all the replacements on one file at a time.

21.4.4. Miscellaneous Applications of Tags

M-X Tist Tags¢<filed<cd lists all the tags in the specified file. Actually, all the files in the tag table whose
names contain the stiing <file> are listed.

M-X Tags Apropos¢<patd<crd lists all known tags whosc names contain <pat>.
M-X Tags File List inserts in the buffer a list of the files known in the visited tag table.

M-X Tags Rescan runs ©TAGS over the visited tag table and revisits it. ‘This is the most convenient way to
update the tag table.

M-X View Arglisté<tag><cr> lets you look bricfly at the line on which a tag is defined, and at the lines of
comments which precede the definition. ‘This is a good way to find out what arguments a function nceds.
"The file is always loaded into a separate buffer, when this command is used.

M-X What ‘Tag? tells you which £ nction’s definition you arc in. 1t looks through tne tag table for the tag
which most nearly precedes point,

21.5. What Constitutes a ‘g

In Lisp code, a function definition must start with an "(" at the beginning of a line, followed immediately
with an atom which starts with "DEF" (and doces not start with "DEFP"), or which starts with "MACRO", or

Uiy o sl sl b S L o 3 ot s 8l i

RN b 0 L o 0 001 R W

bt th kol e

ke

106

rbuich ¢ <= B

EMACS Manuatl for F1'S Users

which starts with "ENDF". The next atom on the linc is the name of the tag. If there is no sccond atomn on
the line, there is no tag.

ot o ne e) ek e S ot 4

In MIDAS code, a tag is any symbol that occurs at the beginning of a linc and is terminated with a colon or
an cqual sign. MIDAS mode is good for MACRO-10 also.

LA e Y e b o o bl M

IFAlL. code is like MIDAS code, except that one or two +'s or “~"'s arc allowed before a tag, and spaces are

allowed between the tag name and the colon or equal sign. and _ is recognized as cquivalent to =.

PALX code is like MIDAS code, except that spaces arc allowed between a tag and the following colon or
cquals, and local tags such as “10$" arc ignored.

In TECO code. a tag starts with an ™" and ends with a "1, There may be any number of tags on a linc,

b B e bl Uy AL L it o

bt the first one must start at the beginning of a line,

In MUDDIE code, a tag is identified by a line thut starts with "<DEFINE * or "<DEFMAC ', followed
by a symbol.

g

i

In MACSYMA code, a function definition is recognized when there is a symbol at the beginning of a line,

terminated with a "(" or "[", and there is a ":" later on in the line. If the symbol itself is terminated with a

:". a variable definition is recognized.

bbbt

In R text, any line which starts with ".dc” or ".am" or ".rtag" defines a tag. The name of the tag is what
follows, up to the second run of spaces or the end of the line. There is no “.rtag” in R; define it to be a null

macto, if you like, and use it 1o put in tags for chapters, or anything clse. Any macro whose name starts with
“de" or "am” or "rtag", such as ".define” or ".amplify”, also defines a tag.

In "TJ6 text, any line which starts with *.C TAG" starts a tag. The name of the tag is whatever follows the
spaces which should follow the "C TAG", up to the next space or the end of the line. :

O A e

A

ks

i

21.6. Adding or Removing Source Files

A tag table file is a sequence of entries, one per file. Zch entry looks like

<filenames>
<count>,<language>
<rata lines>

G

lilenames> are the fully defaulted names of the file, <language? is one of the languages that TAGS knows

how o process, and <data linesd are the actual tag information lescribed below). “The CRLIF after cach 1_ - %

,1 '_j

; must be present. You can omit both the last 1 _ and its CRLIF together, however. ;:E

: . £ -

| 5
L

i
|
1

,
7

1
o JAS
A

-~ iyt iy ey = B

B Lo a7 R

M ol bt 280 8l

‘The TAGS Package.

[NPRIPRPII T N L

A tags file is for the most part an ordinary ASCII file, and any changes you make in it, including changes to
the source files’ names, will do what they appear to do.

‘The onc exception is that cach entry contains a count, in decimal, of the number of characters in it
including the 1_ and CRLE. If you cdit the contents of an individual source file's entry, and change its
length, then the tags file is no good for use in cditing until you run :“TAGS over it. TTAGS ignores the
specified count and always writes the correct count. If you are sure that the length is unchanged, or if you

change the count manually, then running I'FAGS is not necessary, but you do so at your own risk. If you
screw things up. use :TAGS to fix the file.

AT A RN,

‘Thus. if you are changing a source file’s name, you should simply change the name where it is present in
the tags file, and rea 'FAGS over it if necessary.

To add a new source file, simply insert a dummy eatry of the sort used in making a new tags file. "Then use

“FAGS to turn it into a reai entry. Unless you go o the trouble of putting a valid count in the dummy entry,
you must run JFAGS again before using the file.

You can delete a source file from a tags file by deleting its entire entry. You can also change the order of
the entries without doing any harm {the order of the entries deesn’t matter very often). Since the counts of
the remaining entries are still valid, you need not run “TAGS over the file again.

You can cdit everything else in the tags file too, if you want to. You might want to change a language
name once in a while, but { doubt you will frequentiy want to add or remove tags, especially since that would
all be undone by the next use of ;' TAGS!?

21.7. How a Tag Is Described in the Tag Table

A tag table file consists of one or more subunits in succession. Each subunit lists the tags of one source file.
Each subunit has the overall format described in the previous section, containing zero or more lines
describing tags. Here we give the format of cach of those lines.

Starting with the third line of the tag table entry, cach line describes a tag. It starts with a copy of the
beginning of the line that the tag is defined on, up through the tag name and its terminating punctuation.
Then there is a rubout, followed by the character position in decimal of the place in the line where copying
stopped. For example, il a Lne in a MIDAS program starts with "FOO:" and the colon is the 602nd
character in the file, then the line describing it in the tag table would be

EMACS Manual tor I'l'S Users

FOO: <rubout>603

One line can describe several tags, if they are defined on the same line; in fact, in that casc, they must be
on the same line in the tag table, since it must contain cverything before the tig name on its definition line.
Fur example,

'Foo:! !Bar:!

in a file of 'ECO code followed by character number 500 of the fiie wouid turn into

!Foo:! !Bar:!<rubout>500
EMACS will be abic to use that line to find cither FOO or BAR, TAGS knows how to create such things
only for TECO files, at the moment. They aren’t necessary in Lisp or MACSYMA files. In MIDAS files,
TIAGS simply ignores all but the first tag on aline.

21.8. Tag Tables for INFO Structured Documentation Files

INF-O files arc divided up into nodes, which the INFO program must scarch for. Tag tables for these files
are designed to make the INFFO program run faster. Unlike a normal tag table, the tag table for an INIFO file
resides in that file and describes only that file. ‘This is so that INFFO, when visiting a file, can automatically -
use its tag tablc if it has one. INIFO uses the tag tables of INFO files itself, without going through the normal .
T'AGS package, which has no knowledge of INIFO file tag tables. hus, INFFO file tag tables and normal ones
resemble cach other only in their appearance, and that for convenicnce the same JTAGS program generates

both. n use, they are unrelated to cach other.

To ereate a tag table in an INFO file, you must first put in a skeleton, "This skeleton must be very close to
the end of the file (at most 8 lincs may follow it, or INFO will not notice it), and it must start on the line
following at_ or t_tL which cnds a node. Its format is as follows:

t_tL

Tag Table:

t_

End Tag Table

No nodes may follow the tag table, or JTAGS will not put them init. TTAGS is one pass and after writing
the tag table into the file it copies the rest of the input.file with no processing.

“T'o turn the skeleton into the real thing, or to update the tag table, run JTAGS on the file and specify the /1

switch, asin

R A +

PR g 1

T

‘The TAGS Package.

:TAGS INFO;EMACS/I

‘TAGS will process the file and replace the old tag table or skeleton with an up-to-date tag table. The /I

identifics tie specified file as an INFO file rather than a tag table file. Also, it makes the default FN2 *>”
rather than the usual ""TAGS".

Once the tag table is constructed, INFO will automatically make use of it. A tag in an INFO file is just a
node; whatever follows "Node:" on a line whose predecessor contains a '.'1__" is taken 1o be a tag. The
charactet which terminates the node name, which may be a comma, tab, or CRLFE, is not included in the tag
table. Instead, the rubout comes right after the tag name. ‘This is to make it casy for INIFO to demand an
exact match on node names, rather than the substring match which the TAGS package normally uscs.

‘Tag tables in INFO files must be kept close to up to date. INFO will n.t find the node if its st has
moved more than 1000 characters belore the position listed in the tag table. For best results, you should

update an INFQ files tag table every time you modify more than a few characters of it.

el L an

o DAL

Ll i IR

Lactd 0 e st Wb o

gk 0l i L

gyt 8 3 L) 301100 oo i

110 EMACS Manual for I't'S Users

Simple Customization 111

0 NN 8 R ROBIRAOSA o

22. Simple Customization

b B bt bl

T

A bt s A

In this chapter we describe the many simple ways of customizing EMACS without knowing how to write
TECO programs.

l

22.1. Minor Modes

el

it

Al

Minor mades are options which you can use or not. ‘They are all independent of cach other and of the
sclected major mode. Most minor mades say in the mode line when they are on. Sce section 1.1 [Mode Line].

page 6. Each minot mode is the paime of the function that cas be used to turn it on or off. With no argument,

the function turns the mode on if it was off and off if it was on. This is known as “toggling”. A positive

argument always turns the mode on, and an explicit zero argument or a negatise argunient always tgins it off.

All the minor mode functions are stitable for conuecting to single or double character commiands if you want
to enter and cxit a minor mode frequently.

Auto Fill mede allows -you to type text endlessly without worrying about the width or your screen. Line
separators are be inserted where needed to prevent lines from becoming too long., “The column at which lines
are broken defaults to 70, but you can sct it explicitly. C-X I¥ (*R Set Fill Column) sets the column for

breaking lines to the column point is at: or you can give it a numeric argument which is the desired column.
‘The value is stored in the variable Fill Column.

-

Aulo Save mode protects you against system crashes by periodically saving the file you are visiting.
Whenever you visit a file, auto saving is enabled if Auto Save Default is nonzero; in addition, M-X Auto Save

allows you to turn auto saving on or off in a given buffer at any time. Sce section 13.3 [Auto Save), page 57.

Atom Waord mode causes the word-moving commands, in Lisp mode, to move over Lisp atoms instead of

words. Some people like this, and others don’t. In any case, the s-eapression motion comminds can be used

o move over atums. I you like . use - scgmented atom pames like

l"OOB/'\R-RliAl)-lN-Nl{X'l'-lNl.’U'I"SOUR(.’li-'l'O-Rliz\.l), then you might prefer not to use Atom Word

made, so that you can use M-I< to move over just part of the atom, or C-M-F to inove over the whole atom.

Overwrite mode causes ordinary printing characters to raplace cxisting text instead of shoving it over. Itis
good for editing pictures. For cxample, if the point is in front of the B in FOORBAR, then in Overwrite mode
typing a G changes it i() FOOGAR, instead of making it IFOOGBAR as usual. Also, Rubout is changed to
turn the previous character into a space instead of deleting it.

Word Abbrey mode allows you to define abbreviations that automatically expand as you type them. For

|

JRPRP————— L

e

|

112 EMACS Manaal for I'1S Users

cxample, "wam" might cxpand to "word abbrev mode”. ‘The abbreviations may depend on the major (e.g.

Lisp. Text, ...) mode you are currently in. ‘To use this, you must load the WORDAB library. See scetion 25
[Wordabl, page 141.

Indent Tabs mode controls whether indentation commands use tabs and spaces or just spaces to indent
with, Usually they use both, but you might want to usc only spaces in a file to be processed by a program or

system which doesn’t ignore tabs, or for a file to be shipped to a system like Multics on which tab stops are
not every 8 characters. ’

Most miner modcs are actually controlled by variables. The mode is on if the variable is nonzero. Setting
the minor mode with a command works by changing the variable. ‘This means that you can turn the modes

on or off with Edit Options. or make their values Tocal to a buffer. See section 22.3 [Variables], page 114,

You could also put a minor mode in the local maodes list of a file, but that is usuilly bad practice. ‘This is
hecause usually the preference for a minor maode is usually a matter of individuad style rather that a property
of the file per se. To make this more conciete, it is a property of a file that it be filled to a certain column, but
use of auto fill mode to accomplish that is a matter of taste, S it would be good practice for the file to specify

the value of Fill Column, but bad practice for the file to speciiy the value of Aute IKill Mode.

If you find youssell constantly tempted to put Aute Fill Mode in local modes fists, what you probably

really want is to have Auto Fill mode on whenever you are in ‘Text mode. This can be accomplished with the
following code in an EVARS file:

Text Moda Hook: IM.LAuto Fill Modeé

Suffice it to cxplain that this is TECO code to be exccuted whenever ‘Fext modc is entered, which makes the
variaile Auto Fill Mode local to the buffer with focal value 1.

22.2. Libraries of Commands

A EMACS functions, including the ones described in this document, reside in libraries. A function is not
aceessible unless tive library that contains it is loaded. Every EMACS starts out with one library loaded: the
EMACS library. "This contain o of the functions «<escribed in this document, except those explicitly stated to
be clsewhere. Other libraries are provided with EMACS, and can be loaded automatically or on request to
make their functions available. See section [Catalogucel, page 185, for a list of them.

‘T'o load a library permancntly, say M-X Load Librarvé<libname)<cr>. “The library is found, cither on your
own dircctory or whichever one you specify, or on the EMACS dircctory, and loaded in, All the functions in
the library are then available for use. Whenever you use M-X, the function name you specify is looked up in

cach of the libraries which you have loaded, more recently loaded libraries first. The first definition found is

)

Mo

4

o

D ey O

N 0D 30O L

00U LR 24

1 A e 0 0t 3000

s Yo i et L W i b

RIS

Simple Custcmization

Ut g

the one that is used.

FFor example, if you load the PICTURE library, you can then use M-X Edit Picture to run the Edit Picture
function which cxists in that library.

A SR B LR B

by W 1

In addition to making functions accessible to M-X, the library may coinect some of them to command
characters.

st bt bl

You can also load a library temporarily, just long enough to usc one of the functions in it. ‘This avoids
taking up spacc permancntly with the library. Do this with the functicn Run Library, as in M-X
Run4<thaame>¢<function named<cr>. The library <libname> is loaded in. and <function name> cxccuted.
‘Thes the tibrary is removed from the EMACS job. You can load it in again later.

M-X List Loaded Librarics types the names and brief descriptions of all the libraries loaded. List foaded
first. ‘The last one is always the EMACS library. You can get a description of all the functions in a library
with M-X List Library¢<libnamed<cr>, whether the library is loaded or not.

The function Kill Libraries can be used to discard librarics loaded permancntly by load bibrary.
(Libraries used with Run Library are uiscarded automatically). However, of all the libraries presently loaded,
only the most recently loaded one can be discarded. Kill Libraries offers to kill eich loaded library, most
recently loaded first. 1t keeps killing libraries until you say to keep one library. “Then it returns, because the
remaining libraries cannot be deleted if that library is kept.

Librarics are loaded automatically in the course of excecuting certain functions. You will not normally

£

notice this. For example, the ‘TAGS library is automatically loaded in whenever you use M-, or Visit Tag %_
Tabic for the first time. ‘This process is known as "autoloading”. [t is used to make the functions in the i
2

. R . . EH
I'AGS library available without the user’s having to know to load the library himscif, while not taking up %

space in EMACSces of people who arer’t using them. ‘This works by simply calling 1.oad Library on the
library known to be needed. Another kind of "autoloading” loads a library temporarily, the way Run Library

i

A

does. This is done when you use the DIRED function, for example, since the DIRED library is not nceded

after the DIRED function returns. ‘This works, not by calling Run Library, but by doing M.A, which is how
Run Library also works.

g

Ry

I|WMMIMWMWMWMW i iwmmmvﬁfﬁﬁ.wanmnn.ngmmme'.mmmmmmmmm..qw.m.\

You cim make your own fibrarics, which you and other people can then use, iff you know how to write
TECO code. See the file INFO:CONV >, nade Lib, for more details.

s s i ¢
il

=
2
e

hadi sy

e it Y

EMACS Manual for I't'S Users

22.3. Variables

A variable is a name which is associated with a vaiue, cither a number or a string. EMACS uscs many
variables internally, and has others whose purpose is to be st by the user for customization. (‘They may also
be set automatically by major modes.) One example of such a variable is the FFill Column variable, which
specifies the position of the right margin (in characters from the left margin) to be used by the fill and justify

commands.

‘The casiest way for the beginner to sct a named variable is to use the function 1dit Options. This shows
you a list of selected variables which you are likely to want to change. together with their valucs. and lets you
cdit them with the normal editing commands in a recursive editing level. Don’t make any changes in the
names. though! " st chamge the values. Digits with maybe a minus sign stand for a numeric value of the
variable. while string values are enclosed in doublequotes. Each option is followed by a comment which Sitys

what the option is for. Type the Help character for more infonnation on the format used.

When you arce finished, exit Edit Options using C-M-C and the changes will take effect. If you decide not

to make the changes, C-] gets out without redefining the options. See section 6.2 [Recursive Liditing 1.evels],

page 26.

If you give Edit Options a string argumenit, it shows you only the options whose names include the string.
For example, M-X Edit Options¢ FillKcr> shows only the options that have "Fill” in their names. This is

much more convenient, if you know what you plan to do.

However, Iidit Options can be used only t6 set a variable which alrcady exists. and is marked as an option.
Some connnands may refer to variables which do not cxist in the initial emvironment. Such coninands abways
use a default value if the variable does not exist. In these cascs you must create the variable yourself if you
wish to use it to alter the behavior of the command. You can use M-X Set Variable for this. You can set the
variable o a numeric value by doing C-U <number> M-X Set Variable#<varnamed<ced. or to a string by
doing M-X Sct Variable¢<varname>¥<stringd<crd.

In fact, you can use Set Variable to set any variable, whether it exists already or not. For existing variables,
it docs not matter whether you use upper case or lower case letters, and you are allowed to abbreviate the
name as long as the abbreviation is unique. I the variable might not exist yet, you can’t abbreviate it (how
could FMACS know what it was an abbreviation of?). and while cither upper case or lower case will still
wark, you are encouraged to capitalize cach word of the name for acsthetic reasons since EMACS stores the

e as you give it

“To examine the vaiuc of a single variable, the command M-X View Variable#<varnamed<erd can be used.

Simple Customization

If you want to set a variable a particular way cach time you use EMACS, you can use an init file or an
EVARS file. ‘This is onc of the main ways of customizing EMACS ‘r yourself. An init file is a file of TECO
code to be exccuted when you start EMACS up. ‘They are very general, but writing one is a black art. You
might be able to get an expert 10 do it for you, or modify a copy of someone else’s. Sce the file INFO;
CONYV >, node Init, for details. An EVARS file is a much simpler thing which you can do yourself. Sce
section 22.7 [EVARS files], page 120.

Values of variables can be specificd by the file being edited. For example, if a certain file ought to have a
50 column width, it can specify a value of 50 for the variable FFill Column. ‘Then Fill Column will have the
valve 50 whenever this fi'e is edited. by anyone. Editing other files is not affected. Sce section 22.6 [Locals),

pige 118. for how to do this.

You can get a list of all variables. not just those you are likely to want to edit, by doing M-X List Variables.
Giving Iist Variables a suing argument show only the variables whose names or values contain that string
(like the function Apropos). M-X Describe can be given a variable’s name instead of a function’s name; it

prints the variable’s value and its documentation, if it has any.

You can also set a variable with the TECO command <val>U#varname>$ or (14<varnamed#<string>+.

“This is useful in init files,

Any variable can be made local to a specific buffer with the TECO command M. Cvariable named+,
Thus, if you want the comment columa to be column 50 in one buffer, whereas you usually like 40, then in
the one huifer do M.I.Comment Column# using the minibuffer. "Then, you can do S0U4Cimnment Columné

in that buffer and other buffers will not be affected. This is how local modes lists in fies work.

Must local variables are Lilled (made no fonger locul)-if you change major modes. They are thercfore
called "mode locals”. “There are also "permanent” locals which are not killed by changing modes; use 2.M UL
to create one. Permanent locals arc used by things like Auto Save mode to keep internal information about
the buffer, as opposed buffer-specific customizations. Sce the file INFO;CONV >, node Variables, for

information on how local variables work, and additional rclated features.

22.4. The Syntax Tahle

All the EMACS commands which parse words or balance parentheses are controlled by the syntax table.
Fach ASCI: character has a word syntax and a Lisp syntax. By changing the word syntax, you can control

whether a character is considered a word delimiter or part of a word. By changing the Lisp syntax, you can

control which characters are parentheses, which ancs are parts of symbols, which ones are prefix operators,

and which ones arc just ignored when parsing s-expressions.

PR

il

W
PR ——
Al

RUARPRIN oy s & g,

BEMACS Manual tor 1'1S Users

‘The syntax table is actually a string which is 128*5 characters long. Each group of S consecutive characters

of the syntax table describe one ASCH character’s syntax; but oniy the first three of cach group are used. Yo

edit the syntax tablc, use M-X Edit Syntax ‘Table. But before we describe this command, Iet’s talk about the
syntax of the syntax table itself.

‘The first character in each group of five sets the word syntax. This can be cither "A™ or a space. "A”

significs an alphabetic characier. whereas a space sigaifics a separator character.

"The second character in cach group is the Lisp syntax. It has many possible values:

A an alphabctic character

spacc a whitespace or nonsignificant character
an open parenthesis
acluse parcnthesis

: a commeoent starter

™ a comment ender

| a string quote

/ a character quote

: a prefix character

Thus, several charactens can cach be given the syntax of parentheses. The automattic display of matching

feature uses the syntax table o decide when o go into operation as well as how o balance the parentiicses,

The syntax of “prefix character™ mceans that the character becores part of whatever object follows it, or

can also be in the middle of a symbol, but docs not consiitute anything by itself if surrounded by whitespace.
A characier quote character causes itsclf and the next character to be treated as alphabetic.

A string quote s one which matches in pairs. All characters inside a pair of string quotes are treated as
alphabetic except for the character quote, which retains its significance, and can be used to force 2 string
quote or character guote into a string.

A comment starter is taken {o start a comment, which cnds at the next comnient ender, suppressing the
norma! syntax of all characters between. Not all the conimands which might be expected to know about
comments do know ithout them: there a problems more than simply a need for vork. Also, the syntax table
entry is not what controls the commands which deal specifically with comments. They use the variables
Comment Start, Comment Begin, Comnient Ind, cte. Osily the indentation conunands usc the syniax table

for this.

"IThe third character in cach group controls sutomatic parenthesis matching display. It is defined only for
characters which have the Lisp syntax of close parenthescs, and for them it should coatain the appropriate
matching open parenthesis character (or a space). If a close parenthesis character is matched by the wrang

kind of open parenthesis character. the bell will ring. 11 the third syntax table character of a close parenthesis

AT Vi »-nmmmnm%mmmmmn st st b

%ﬂ%

T TP

S
b

B — A

Simple Customization 17

is a space, any open parenthesis is allowed to match it.

‘The fourth and fifth characters in cacn group should always be spaces, for now. ‘They arc not used. ‘The

reason they exist is so that word-wisc indexing can be used on the PDP-10 (¢ access the syntax of a character
given in an accumulator.

Edit Syntax "Table displays the syntax table broken up into labelled five-character groups. You can see
casily what the syntax of any character is. You are not editing the table immediately, however. Instead, you
arc asked for the character whose syntax you wish to edit. After typing it, you arc positioned at that
character’s five-character group. Overwrite mode is on, 50 you can simply type the desired syntax entrics,
You can also do arbitrary cditing, but be carcful not to change the position in the buffer of anything. When
you exit the recursive editing fevel, you are asked for another charicter to position to. An Altmode at this
point exits and makes the changes. A C-J at any time aborts the operation.

Many major modes aiter the syntax table. Each major mode creates its own syntax table once and reselects
the same string whenever the maode is selected, in any buffer. Thus, all bufTers in "Fext mode at any time use
the same syntax table. This is important hecause it you ever change the syntax table of vne bufler that is in
Text maode, you change them all. 1t is possible to give one buffer a local copy with a ' THCO program:

MM Make Local (Q-Registeré..D4W :G..DU..D
The syntax tables belonging o the major moues are not prejaitialized in EMACS: they are created when the
major mode is invoked for the first time, by copying the default one and making specific changes. Thus, any
other changes you have made in the default (Fundainental mode) syntax table at the beginning propagate

into all modes’ syntax tables unless thosc modes specificatly override them.,

TECO programs and init files can most casily change the syntax table with the function & Alter ..1J (look
at its documentation). "The syntax table is kept in the g-register named ..1J, which explains that name.

22.5. TS Flags '

I'S flags are variables defined and implemented by ‘THECO below the level of EMACS. Some of them are
options which contral the behavior of parts oi “'FECO su.ch as the display processor. Some of them control the
execution of TECO programs: you are not likely to want to change these. Others simply report information
from inside TECO. The list of I'S Mlags is fixed when THECQO is assembled and cach one exists for a specifie
purpose.

IS flags are used mostly Sy the 'TECO programmer, but some of them are of interest o the EMACS user
doing minor customization. For example, &S ECHO LINES# is the number of lines in the ccho aica. By
settang this flag you can make the echo area bigger or smaller.

s i AT e Wy e R s Pl A Pt i, U i

Mok 1 T Lom oy NS

ey

—— sn—
Lol

P IERE

o AL i e 0 b 4010 Bt L At R

,
i
¢
1
i
i
I
H

H

3 o i il W i

|
Hh

&

AT

i

:ﬁ

AR

L

¢

o s e s S

T DU

118 FEMACS Manual for I't'S Users

To get the value of an FS flag, use the 'T1CO command FS followed by the name of the flag, terminated
by an Altmode. Spaces in the name of the flag are completely ignored, and case does not matter. Thus, FS
Ficho Lines¢ = cxecuted in the minibuffer prints the number of lines in the ccho area, assuming it is a
number. The casiest way to examine a flag’s value with KMACS commands is

C-M-X View Variable<cr> (FS Echo Lines#)<cr>

‘I'his works regardless of the type of value stored in the FS flag.

To set the flag, give the S command a numeric argument (which must be a string pointer, if the intended
value is a string). IFor example, in the minibuffer or an init file, do
2FS Echo Lines$

Be warned that FS always returns a value, so put a CR1F after it to discard the value if necessary.

IUis possible to make an 'S flag's value Tocal to a buffer. Sce the file INIFO;CONV >, node Vars.

The documentation of individual IS flags can be found throughi Help 1. Help T I°S Echo Lines<er) prints

the description of S ECHO LLINES$. Spaces are not significant in Help 'F cither. A list of just the names of
all IS flags is printed by the function List TECO IS Ilags, found in the library PURIEY.

s 0 e P S A 381 o b 1 Rl 1 4 Lo T et 7 T

22.6. Local Variables in Files

By putting a "local modes list” in a file you can cause certain major or minor modes to be set, or certain

character commands to e defincd, whenever you are visiting it. For example, EMACS can select Lisp mode

[T I

for that file, or it can turn on Auto il mode, set up a special Comment Column, or put a special command

e L 5 AP i T s Aol 20 ik S,

on the character C-M-Comma. Local modes can specify the major mode, and the values of any sct of nined

ok

variables and command characters. [.o~ai modes apply only while the buffer containing the file is selected;

f)};ﬁmf

they do not extend to other files loaded into other buffers.

P

TS

‘The simplest kind of local mode specification sets only the major mode. You put the mode’s name in
beiween a pair of "-*-"'s, anywhere on the first nonblank line of the file. For example, the first line of this file

contains -*-Text-*-, implying that this file should be cdited in "T'ext mode. 3

To specify more that just the major mode, you must use a "local maodes™ list, which goes in the Just page of

B R A e b

the file (it 1s best o put it on a separate page). The local maodes st starts with a line containing the string

i

"Local Mades:", and ends with a line containing the string "End:".

wu

tach linc of the focal .odes list should have the form <varmamed>:{valucd (not counting the prefix and

A

suffix, if any), which is a request to set one variable. <varname> stands for the name of the variable and

i

<valued stands for the desired value. The name must not be abbreviated. I <valued is a numeral (which

means no spaces!), the value is a number; otherwise, it is <valuc as a string. To set a command character,

PTG L L T T M

T T, TR

Simple Customization

make <varname> the name of the character as a g-register, such as "..tR," for C-M-Comma, and make
<vatue> be a string of 'TECO commands which will return the desired value (this is so you can write
M.MFEoo# to define the character to run the function Foo).

‘e major mode can be set by specifying a value for the variable "Mode" (don’t try sctting the major mode
this way except in a local modes list!). 1t should be the first thing in the local maodes list, if it appears atall, A

function M-X Foo can be defined locally by putting in a local setting for the variable named "MM Foo". Sce
section 5.2 [IFunctions], page 21.

The line which starts the local modes list dees not have to say only “Local Modes:”. If there is other text
before “Local Modes:", that text is called the “prefix™, and if there is other text after, that is called the
"suflix". If these are present, cach entry in the local modes list should have the prefix before it and the suffix

after it. This includes the "End:" line. "the prefix and suffix we included to disguise the local modes list as a

L N A L]

comment so that the compiler or text formatter will not be perplexed by it. 1f you do not need to disguise the
local modes ist as a comment in this way, do not bother with a prefix or a suffix.

Aside from the "Local Modes:™ and the "End:", and the prefix and suftix if any, a local maodes list looks

ol W Bl WG 3 bt R

like an EVARS file. However, comments lines are not alfowed, and you cannot redefine C-X subconminands
due to fundamental limitations ol the data structure used to remember local variables,
section 22.7 [EVALS files], page 120, for more information.

:

Sorry. Sce

Iere is an example of a local nodes list:
;7 Local Modes: :::
1: Mode:Lisp :::
113 Comment Column: :
;13 Comment Start:;;; ::
i3y ..MR/: m.m*R My Funny Meta-Slash¢
;s End: :::

0 ::

e
o0

.
s

Note that the prefix is ";;; " and the suffix is " :2:". Note also that the value specified for the Comment Start

variable is ;2 ", which is the same as the prefix, so the local inodes list fooks like a lot of comments. We used

rryTp————

a suffix in this example, but they arc usually not used except in languages which requite conunent
terminators.

R’ i I s+ st
g o b e A S

5
3
£
]
3
S
E
E]
=%
=l
=l
&
=

"The last page of the file must be no more than 10000 characters long or the local modes list will not be

recognized. ‘This is because EMACS finds the local modes list by scanning back only 10000 characters from
the end of the file for the last formfeed, and then looking forward for the "Local Modes:" string, 'This

accomplishes these goals: a stray "lLocal Modes:" not in the last page is not noticed; and visiting a long file

that is all one page and has no local mode list need not take the time to scarch the whale file.

e e L

120 IEMACS Manual for 1S Users

22.7. Init Files and EVARS Files

EMACS is designed to be customizable: cach user can rearrange things to suit his tastc. Simple
customizations arc primarily of two types: moving functions from one character to another, and sctting
variables which functions refer to so as to direct their actions. Beyond this, extensions can involve redefining

existing functions, or writing cntirely new functions and creating sharable librarics of them.

‘The most general way to custoinizc 1s to write an init file, a TECO program which is executed whenever
you start EMACS. The init file is found by looking for a partizular filename, <home directoryd:Cuser
name>EMACS. This incthod is general because the program can do anything. 1t can ask you questions and
do things, rather than just setting up commands for later. However, TECO code is arcane, and only a few
peaple learn how to write it. 1 you need an init file and don't feel up to fearning to write ‘THCO code, ask a
local expert to do it for you. Sce the file INFO;CONV >, for more about init files.

However, simple customizations can be done in a simple way with an EVARS file. Such a file serves the
same sort of purpose as an init file, but instead of TECO code, it contains just a list of variables and values.
Fach line of the EVARS file names one variable or one command character and says how to redefine it.
Empty lines, and lines starting with spaces, are ignored. "They can be used as comments. Your EVARS file is
found by ity filename, as an init file is, but it should be called <home directory>:<user name> 'VARS instead
of BMACS. You can have both an init lile and an EVARS file if you want, as long as your init file calls the

default init fije, since that is what processes the EVARS file.

To set a variable, include in the EVARS file a line containing the name of the variable, 4 colon, and the
value. 1f you want a string as a valuc, give the string; if you want a number as a value, give the digits with an
optional minus sign. (1f you happen to want a value which is a string of all digits, you are out of luck.) Do not
pat spaces around the colon for visual effect. Space before the colon is part of the variable name, and space
after the colon is part of the value of the variable. Examples:

Comment Column:70
Comment Start:;
Text Mode Hook:1M.LAuto Fili Mode¢

Text Mode Hook, by the way, is supposed to hold « TECO program to be exccuted whenever Text maode is
entered, andd the TECO program supplicd by this particular definition is designed (o turn on Auto I4i#l mode

at that time. The effeet is that Auto FFill is always on when you are in‘Text inode.

o redefine a command character is o little more complicated. Instead of the namne of a variable, givea TR
(contivl-R) followed by the character. Since the general Control and Meta character cannot be part of a file,
all Control and Meta characters arc represented in a funny way: after the tR put the residue of the character
after removing the Control and Meta, and before the TR put periods, onc for Control, two for Meta, and three
for “.ontrol-Meta. Thus, C-1) is represented by ".tRD" and C-M-; is represented by "...tR;". Lower case

C s o NS WA AT v‘l '
"

Simple Customization

characters such as C-a arc usually defined as "exccute the definition of the upper case cquivalent”.
Therefore, by redefining the C-A command you also change C-a; but if you redefine C-a, by saying “.tRa"
instcad of “.tRA", you will not change C-A. So be carcful about case.

Instead of the value of a variable, for command character redefinition you must give a TECO cxpression
that returns the desired definition. "Yhis is to make it casy to use any function whose name you know, because
M.MEQOO® is an expression that returns the definition of the function FOO. Example:

ARK: M.M~R Kill Line¢
would give C-K the definition that it normally Lia.. Remember that in names of functions the "~R" is actually

"an

a ™" and an R, not a Control-R. ‘The space before the MM does not hurt in this case because it is ignored by

T'ECO expression execution.

Some non-printing characters arc a little tricky to redefine. For example, you must know that Return,
Lincfeed, Tab, Backspace and Altmode are not the same in T1ECO’s conunand characier set as C-M, C-J, C-1,
C-H and C-, even though i ASCII they are synonymous. By saying .tRJ you will redefine C-J: by saying
tR followed by a Lincfeed (which you must insart in the EVARS file by typing C-Q Linefeed) you can
redefine Linefeed. Noimally, C-J is defined as "exccute the definition of Linefeed”, so you are better off

redefining Lincfeed.

You can also redefine a subcommand of a prelix character such as C-X. lor this, you have to know v here
the character’s dispatch table is stored. FFor C-X, the location of the dispatch is called ".X"; you won't have
any other prefix characteis unless you deline them yourselll Sce the file INFO:CONV >, node Prefix.
Knowing the location, vou specify the subcommand by writing :lnc.uim)(r“chamcter). This fouks silly, but it
is a T1CO expression with the right mcaning. For example, redefining C-X C-S, the location is ".X" and the
character is 18, so we say

. X(1~1S): M.M~R Save Fileé
This gives C-X C-S the definition that it normally has. ‘The subcommand character (1S in this casc) can
represent itself in the EVARS file with no need for dots, because subconimand characters are just ASCIH, with
no Mecta allowed.

To connect a conmand character to a function from a library which is not normally loaded, you can do
MR, MM Load¢FOO4W A.MBare
"This loads the library 1°F00 and connects the command C-Comma to the function Bar, presumably found in
that library. The "W* discards the value teturned by MM Load¢ so that it does not interfere with the
M.MBars,

g

To simply load & library you can wiite a definition for "**. Such a definition is ignored except that the
value you specify is executed as o TECO expression. Thus, an arbitrary "TECO expression can be snuck into

an EVARS file. "To load the library 100, use the expression MM Load > FO0¢,

NG R ’Hlikkwﬁtmi-;u i

EMACS Manual for I'ES Users

|
i

fulubitublulu

*. MM Load¢F00¢ '

il b ot

Please refrain from giving newcomers to EMACS a copy of your own init file before they understand what
it does. Everyone prefers his own customizations, and there is always a tendency to proselytize, but by the
same token your protege’s tastes may be different from yours. f you offer him your customizations at:the

time when he is ready to understand what difference they make and-decide for himself what Le prefers, then

A b At

vou will help him get what Jie wants. ‘Fell him about cach individual change you made, and let him judge
them one by one. There is no reason for him to choose all or nothing.

22.7.1. EVARS File Examples

fere are some examples of how to do various useful things in an EVARS file.

ES
E
E
2
=
s
E
E
=
=

“This causes new bufTers to be created in Lisp mode:
Default Major Mode:LISP

T'his causes new buffers to have auto fill mode turned on:

Buffer Creation Hook: IM.L Auto Fill Mode¢

‘| his causes all Text irade buffers to have auto il mode turned on:
Text Mode Hook: IM.L Auto Fill Mode¢

This causes C-M-G (o be undefined by copying the definition of C-M-Space {which is undefined):

...1RG: Q...1R (a space follows the control-R)

‘This redefines C-S to be a single character scarch cominand, and M-S to be a non-incremental string
scarch:

.tRS: M.M ~R- Character Search+¢
..1RS: M.M ~R String Search¢

This redefines C-X V to run View Filc:
. X(1 V) MM View File¢

This makes M-M a prefix character and defines M-M W to mark a word ana M-W P to nuiuk a paragraph. i
It stores the dispatch vector for the prefix character in g-register Y.

g

i,
S

Wﬁw-'”ﬂﬂu.ﬁ"m y]‘i‘l‘,wlﬁ T‘|“|w LA

MRS ch 0 0t s o

=t

!
!

Simple Customization

..1RM: MM Make Prefix Character¢.Y¢
1LY(T W): M.M ~R Mark Wordé¢
:.Y(t~P): M.M ~R Mark Paragraph¢
This loads the library LUNAR and defines C-Q to run a uscful function in that library:
*: MM Load Library¢LUNAR+¢
.tRQ: M.M ~R Various Quantities¢
"T'his causes Auto Save mode to save under the visited filenames:

Auto Save Visited File:1

This causes TAGS to bring new files into separate buffers:

TAGS Find File:1

This stops the message "IEMACS version nnn. Type ... for Hzlp” from being printed.
Inhibit Help Message:1

to he "A" for

4
A

‘This redefines the list syntax of %" to be ™" for "comment starter”, and that of ;"

“alphabetic”:
*: lom& Alter ..Do%;;A¢
22.7.2. Init File Examples
Here arc the ways to do exactly the sime things in an init file.

This causes new buffers to be created in Lisp mode:
:I4Default Major Mode¢LISPé

This causes new buffers to have auto fiil mmode turned on:
:I* IM.L Auto Fill Mode1]¢ ¢ M.VBuffer Creation Hook¢

It is dificrent becausce the variable docs not atready exist. Note the 1] used for getting the Alumode into the

value.

This causes all Text made buffers to have auto fill mode turned on:
:I* IM_L Auto Fill Modet]¢ ¢ K.VText Mode llook+

waly 1

T'his causes C-M-G to be undefined by copying the definition of C-M-Space (whici is undefined):

e ol 011

RS PRI K tiag s s mg sy o —

!
{
i
i
i
H
;

124 EMACS Manual for I'1'S Users

Q...*1R U...tRG

‘This redefines C-S to be a single character search command, and M-S to be a non-incremental string
scarch:

M.M ~R Character Search¢ U.tRS
M.M ~R String Search¢ U..TRS

This redefines C-X V to run View File:
M.M View Fileé U:.X%(1t"V)

"This makes M-M a prefix character and defines M-M W to mark a word and M-W P to mark a paragraph.
It stores the dispatch vector for the prefix character in g-register Y.

MM Make Prefix Characteré¢.YoU..tRM
M.M ~R Mark Word¢ U:.Y(1~W)
M.M ~R Mark Paragraph¢ U:.Y(1t"P)

‘This loads the library LUNAR and defines C-Q to run a useful function in that library:

MM Load Library¢LUNAR®
M.M ~R Various Quantitiesé¢ U.TRQ

This causes Auto Siave mode to save under the visited filenames:
1U%Auto Save Visited File¢

Compare this and the next example with the first two, in which string valucs are used.

This causes 'TAGS to bring new files into separate buffers:
IM.VTAGS Find File¢

“I'his stops the message "EMACS version nen, Type ... for Help” from being printed.
1M.VInhibit Help Message+¢

This redefines the list syntax of "%" to be ;" for "comment starter”, and that of ;" to be "A" for
“alphabetic™:
1mm& Alter ..D9%; :A¢

22.8. Keyhoard Macros

XA Start defining a keyboard macro.

C-X) End the definition of a keyboard macro.

C-XE Iixccute the most recent keyboard macro.

C-XQ Ask for confirmation when the keyboard macro is executed.

C-UC-XQ Allow the user to edit for a while, cach time the keyboard macro is exccuted.
M-X Name Kbd Macro

g

=
3
E
£
T
i
H

Simple Customization

Make the most recent keyboard macro into the permancnt definition of a command.

A keyboard macro is a command defined by the user to abbreviate 4 sequence of other commands. If you
discover that you are about to type C-N C-D forty times, you can define a keyboard macro to do C-N C-D
and call it with a repeat count of forty.

Kevboard macros differ from ordinary EMACS commands, in that they are written in the EMACS
command language rath., ien in TECO. This makes it casier for the novice to write them, and makces them
more convenient as tempoerary hacks. However, the EMACS command lunguage is not powerful enough as a

programusiing language to be us>ful for writing anything intelligent or general. For such things, TECO must
be used.

EMACS functions were formerly known as macros (which is part of the explanation of the name EMACS),
becanse they were macros within the context of TECO as an editor. We decided to change the enminology
because, when thinking of EMACS, we consider TCO a programming language rather than an cditor. ‘The

only "macros” iz EMACS now are keyboard macros.

You define a keyboard macro while exccuting the commands which are the definition. Puat differently, as
vou are defining a keyboard macro, the definition is being exccuted for the first time. This way, you can sce
what the effects of your commands are, so that you don’t have to figure them out in your head. When you are
finished, the keyboard nncro is defined and also has been, in effect, exceuted once. You can then do the

whole thing over agatn by invoking the macro.

22.8.1. Basic Use

To start defining a kcybu.urd macro, type the C-X (command ("R Start Kbd Macro). From then on,
your comnimnds continue " be exccuted, but also become part of the definition of the macro. “Def™ appears
in the mode line to remind you of what is going on. When you are finished, the C-X) command ("R End
Kbd Macro) teriminates the definition (without becoming part of it?). “The macro thus defined can be invoked
again with the C-X E command (*R Exccute Kbd Macro), which may be given a repeat count as a mumeric
argument to cxecute the macro rfm:xy times. C-X') can also be given-a repeat count as an argument, in which
case it repeats the macro that maay times, but defining the macro counts as the first repetition (since it is
exceuted as you define it). So, giving C-X) an argument of 2 exceutes the macro one additional time. An

argunient of zero o C-X Eor C-X) means repeat dthe macro indelinitely {umtil it gets an error).

IT you wish to save a heyboard macro for longer than until you define the next one, you must give it a
mame. Do M-X Name Khd Macro#1°O0<er> and the last keyboard macro defined (1 one which C-X E
would invoke) is turned into a function and given the name FOO. M-X FOQ will from then on invoke that

particular macro. Name Kbd Macro also reads a character from the keyboard and redefine that chasacter

o B et o storpta——"

v

H
£
s

126 EMACS Manual for I't'S Users

command to imoke the macro. If you don’t want to redefine a command, type a Return or Rubout. Only
self-inserting and undefined characters, and those that are already keyboard macros, can be redefined in this

way. Prefix characters may be used in specifying the command to be redefined.

To examine the definition of a keyboard macro, use the function View Kbd Macro. Either supply the
name of the function which runs the macro, as a string argument, or type the command which invokes the

macro. on the terminal when View Kbd Macro asks for it.

22.8.2. Executing Macros with Variations

If you want to be allowed to do arbitrary editing at a certain point cacl time around the macro (different
cach timie, and not remembered Js part of the macro), you can use the C-U C-X Q commind (*R Kbd Macro
Query). When you are defiring the miacro, this lets you do some cditing, which does #or become part of the
macro. When you arc done, exit with C-M-C 1o return to defining the macro. When you exccute the macro,
at that same point, you will again be allowed to de some editing. When you exit this time with C-M-C, the
exccution of the macro will resume. I you abort the recursive editing level with C-|, you will abort the macro

definition or execution.

You can get the effect of Quety Replace. where the macra asks you cacli time around whether to make
change, by using the conrnand C-X Q with nu argument in your keyboard macro. When you are defining the
macro, the C-X Q does nothing, but when the macro is invoked the C-X Q reads a character from e
terminal to decide whether to continue. ‘The special answers are Space. Rubout, Altmode, C-1, C-R. A
Spice means to continue. A Rubout means to skip the remainder of this repetition of the macro, starting
again from the beginning in the next repetition. An Altmode ends all repetitions of the macro, but only the
innermost macre (in case it was called from another mocro). C-L clears the screen and asks you again for »
character to say what to do. C-R enters a recursive cditing level: when you exit, you are asked again (if you
t pe a Space. the macro will continuc from wherever you left things when you cxited the C-R). Anything clse

cxits all levels of keyboard macros and is rercad as a command.

W

v

A 100 I e Y] 8

i gLt ldodond ol B

Wl K 4 e

3
=

=

‘I'he Minibuffer

23. The Minibuffer

M-Altmode 1nvokes an empty minibuffer. -

M-% Imvokes a minibuffer initialized with a Query Replace.
C-X Alunode Re-execute a recent minibuffer command.

C-X ~ Add more lines to the minibuffer.

CA\ Mecta-prefix for usc in the minibuffer.

C-CC-Y Rotate ring of recent minibuffer commands.

‘The minibuffer is a facility by means of which EMACS commands can read input from the terminal,
allowing you o use EMACS commands to cdit the input while you arc typing it. ‘The primary use of the
minibufTer is for editing and eaccuting simple TECO programs such as

MM Query Replaceé¢F00
4BAR
+

(which could net be done with M-X because Returns are part of the arguments).

You can always tell when you are in a minibuffer, because the mode line contains something in
parentheses, such as “"(Minibufter)” or "(Query Replace)”. “There is alse a line of dashes across the sereen a
few lines from the top. Strictly speaking, the minibuffer is actually the region of screen above the line of
dashes, for that is where you edit the input that the minibuffer is asking you for. Editing has been fimited to a

few lines so that most of the sereen can continuc to show the file you are visiting.

If you want 10 type in a TECO command, use the minibuffer with the command Meta-Altimode,

("R Execute Minibuffer). An cmpty minibuffer will appear, into which you should type the TECO

command string. Ixit with Alimode Altimode, and remember that neither of the two Alunodes is inserted
into your THCO command although the first onc may appear to be. Whess the TECO command is executed,

“the buffer” will be the text you were cditing before you invoked the minibuffer.

Often, a minibuffer starts out with some text in it. “This means that you are supposed to add to that text, or,
sometimes, to delete some of it so as to choose among several alternatives. For example, Mcta-% (“R Query
Replace) provides you with a minibuffer initially containing the string "MM Query Replace#”. “Ihe cursor

comes at the end. You are then supposed to add in the arguments to the Query Replace.
pp 8 P

In a minibuffer, you can edit your input until you arc satisficd with it. Then you tell EMACS you are
finished by typing two Altmaedes. An Altmode nat followed by another Altmode is simply inserted in the
buffer. “This is because it is commaon o want to put Altimodes into the minibuffer. which usually contains a
string of TECO commands. FFor example, in Mcta-% (R Query Replace) cach argument must be crded by
an Altmode. However, when you type two Altmodes in a row, neither one ramains in the buller. “ilic two

Altmades do nothing to the text in the minibulYer, they just exit.

EMACS Manual for I'l'S Users

Since Alunode is sclf-inserting, typing Meta characters can be a problem. You can do it by using C-\
instead of Altmode as the Meta-prefix. If you type a Contiol-Meta character on your keyboard, the
corresponding ASC!H control character is inserted in the minibuffer. This is becausc the Lisp commands are
rarcly useful when editing TECO code, but insertion of control characters is frequent. 1f you really want to
use a Control-Meta EMACS command, you must use C-C to type it. You cannot use C-\ C-A to type
C-M-A, becaure C-\ (unlike Altmodc) ignores the Control bit of the following character. so you must use C-C
C-A. The mothvation for this quirk of C-\ is that C-\ C-B (t¢ obtain M-B) is casier to type than C-\ B,

especially if it is typed several times in a row.

You can cancel your input in a minibuffer and start all over again by typing C-G. "That kills all the text in
the minibuffer. A C-G typed when the minibuffer is already cmpty cxits from the minibuffer. Usually. this
aborts whitever comimand was using the minibuffer, so it will return without doing anything more. For
example, if you type two C-G's at Meta-%'s minibuffer, you will return to top level and no Query Replace

will be done. ‘Typing a single C-G at a preinitialized minibuffer to empty the buffer is not very useful, since

you would have to retype all the initial text.

The Tast five distinet minibuffer commands or M-X commands you hive issucd are remembered in a ring
buffer in g-register M. The C-X Altmode command (R Re-exccute Minibuffer) re-executes the last
command in the ring. With an argument <rd, it re-executes the <nd’th previous command. The connmand is

printed out (only the first 40 characters or so) and you are asked to confirm with "Y* or "N".

You can alee get your previous minibuffer and M-X commands back into the minibuffer to be edited and
re-executed with changes. Giving M-Alunode and argument, as in C-U M-Alimode, causcs the minibufier to
be loaded up with the last command in the ring, as if you had typed it in again from scratch. You can then
edit it, exccute it by typing two Altmodes. or cancel it with C-G. "To get an carlier omunand string instead of
the most recent one, use the command C-C C-Y once you are in the minibuffer. This command "rotates” the
ring of saved commands much as M-Y rotates the ring of killed text. Each C-C C-Y reveals an 2arlier
commiand string. until the ring has rotated all the way around and the most recent one reappears. C-C C-Y is
actually a way of saying C-M-Y, but is the minibuffer that's the only way to type it, since Altnode inserts

itself and Control-Meta charactess insert control characters.

If you exit from Meta-Altmode with a C-G. nathing is exccuted and the previous minibuffered command

string is still revicmbered as the last once.

While in a minibuffer, if you decide you want the minibuffer to use more lines én the screen, you can use

C-X ~(*R Grow Window) to get more. It gets one more line, or as many lines as its argumcnt says.

i

i

[
l

i

\
I}
I

=
=
=
b=
=
=
=

I L

Correcting Mistakes and EMACS Problems 129

24. Correcting Mistakes and EMACS Problems

If you type an EMACS command you did not intend, the results are often mysterious. Vs chapter tells

what you can do to cancel your mistake or recover from a myst2rious situation. EMACS bugs and system
crashes are also considered.

24.1. Cancelling a Command

C-G Quit. Cancel running or partially typed coninand.

C] Abort recursive editing leve! and cancel the command which invoked it
M-X"top Level

Abort all recursive editing levels iand subsystems which are currently exccuting.
‘There are three ways of cancelling commands wlhiich are not finished exccuting: “quitting” with C-G. and
“aborting” with C-] or M-X Top Level. Quitting is cancelling a partially typed command or une which is

aircady running. Aborting is cancelling a command which has entered a recursive editing level.

Quitting with C-G is used for getting rid of a partially typed command. or a numecric argumnent that you
don’t want. [t also stops a running command in the middic in a relatively safe way, so you can use it if you
accidentally give a command which takes a long time. In particular, it is safe to quit out of killing; cither your
text will afl still be there. or it will aif be in the kilt 1155 v maybe both). Quitting an incremcntal scarch docs
special things documented under scarching: in general, it may take two successive C-G's

5t ect out of a
scarch. C-G can interrupt EMACS at any time, so it is not an ordinary command.

Aborting with C-] (Abort Recursive Edit) is used to get out of a recursive cditing level and cancel the
command which invoked it. Quitting with C-G cannct be used for this, because it is used to cancel a partialiy
typed command within the recursive editing Ievel. Both functions are uscful. FFor example. if you arc cditing
a message {0 be sent, C-G can be « 2d to cancel the commands you use to edit the message, and C-] cancels

sending the message. C-] cither tells you how to resume the aborted command or queries for confirmation
before aborting.

When you are in a position to use M-X, you can use M-X “Top Level. “this is equivaleat to "enongh” C-}
commands to get you out of all the levels of subsystems and recursive edits that you are in. C-] gets you out
one level at a time, but M-X Top Level goes out all levels at once. Both €] and M-X Tap Level are like all

other cenmands, and ualike C-G, in tnat they arc effective only when 1EMACS is listening.

e Ay

=
=

ik

130 EMACS Manual for TS Users

24.2. What to Do if EMACS Acts Strangely

“This scction describes various conditions which can cause EMACS not to work, or cause it to display
strange things, and how you can correct them.

24.2.1. Error Message

When EMACS priats an crror message, it occupics the top line of the screen, cnds with 2 ™, and is

accempaniced by the ringing of the bell. Space causes the error message to disappear and be replaced by the
first line of text again. Any other conunand is exccuted normally as if there hiad been ae error message (the
error message disapoears during the redisplay after the command). However, ™7 enters the crror handler,
which can be used to inspect the functicn call stack. Type Help inside the crrer handler to get its

documentation. Most users will not be interesied in deing this.

24.2.2. Subsystems and Recursive Editing Levels

Subsystems and recursive cditing levels are important and uscful aspects of EMACS, but they can seem

ike malfunctions to the user who does not understand them.

1 vhe mode line starts with a bracket "[” or a parcnthesis (", or docs not stant with the word "IEMACS™,
then vou have enteied a subsystem (Sce section 6.1 [Subsystems]. page 25.) or a recursive editing level {See

section 6.2 [Recursi o2 Fditing Levels), page 26.).

In such a situation. first try typing C-1. "This will get out of ary recunsive editing fevel and most subsystems.
The usual mode line and text display wiil reappear. 1f C-] does not scem to have worked. type the Help
character. instead of printing "D {Fype ? for Help)™ in the echo arca, it will print a list of the subsystem’s

commands. One of these should be a commaid to ¢xit or abort.

if the above techniques fail, try restarting (sec section 24.2.7).

24.2.3. Garhage on the Screen

17 the dta on the screen looks wrong, it ceuld be due o line nase on input or output, a bug in the
ferminal, hug in EMACS redisplay, o7 o bag in ain EMACS command. To find out whether there s reatly
anything wreng with your test, the fiest thing to do is type C-1. This o a comnind o clear the screen and

redisplay i, Often this wilt display data which is more pleasing. Think of it as getting an opinion from

anciher doctor.

Correcting Mistakes and EMACS Probiems 131

24.2.4. Garbage Dispiayed Persistently

IF EMACS persistently displays garbage on the screen, or if it outputs the right things but scattered around
alt the wrong places on the screen, it may be that KEMACS has the wrong idca of your terminal type. ‘The first
thing to do in this casc is to exit from EMACS and restart it. Fach time EMACS is restarted it asks the system
what terminal type you are using, Whenever you detach and move to a terminal of a different type you
should restart EMACS as a matter of course. I you stopped EMACS with the cxit command, or by

interrupting it when it was awaiting a command, then this is sure to be safe,
The systemn itself may not know what type of terminal you have. You should try telling the system with the

TCTYP command.

24.2.5. URK Error (Address Space Exhausted)

If attempting to visit a file or load a library causes an "URK" crror, it means you have filled up the address
space; there is no room inside EMACS for any more files or libraries. In this situation you can run M-X

Make Snace. “This comniand compacts the data inside EMACS to free up some space. 1t also offers to discard

data that may be occupying a fot of space, such as the kill ring (See section 9.1 [Killing]. page 35.), the undp -

memory (See secti 0 24.3 [Undo), page 132.), and buffers ercated by RMALL, TAGS and INFO. Another
way of freeing space is to kiil buffers with M-X Kill Some Buffers (See section 14 [Buffers], page 67.) or
unload libraries with M-X Kill Libraries (Sec section 22.2 [1.ibrarics), page 112.).

24.2.6. All Type-in Echoes and Nothing Else Happens

If you find that EMACS is not responding to your commands except for echoing them all at the bottom of
the screen, including the Return character, and that Rubout causes erased characters 1o be retyped instead of
crased, then vou have managed to cxit from EMACS back to TECO. Often this follows an "Error in error
handler” message which indicates that a condition arose in which the error handler could not function. You
can get back into EMACS by typing :M..1.¢¢, or b§ restarting {see below). lf you ever want to cxit back to
TECO, you can do M-X "Top Level with an argument greater than zero. Before using :M..1.44, get 1id of any
other characters you have typed by mistake by typing a C-G.

24.2.7. EMACS Hung and Nol Responding

Sometimes EMACS gets hung and C-G docs not work. ‘The more drastic procedure of restarting MACS

may werk at such timcs. C-G can fail to work because it only takes effect between the TECO commands

TRERT s

g 4 g M o

1]
3
Z

il

ol

132

EMACS Manual for IS Users

e e b S T

which make up an EMACS program, never in the middle of one (only a few TECO commands allow quitting

at any time), so as to preveit TECO's internal data structures from becoming inconsistent, If EMACS is hung
inside a TECO command. C-G is net noticed, but restarting can still be tried.

To restart EMACS, type CALL or C-Z to stop EMACS, then 4G to restart it. While restarting TECO in
this way is usually safe (cspecially at times when TECO is doing 1/0), there are certain times at which it will

cause the TECO data structu.res to be inconsistent, so do not try it unless other measures have failed.

Your ultimate safeguard agains: & wedged EMACS is to save your work frequently.

24.3. Undoing Chasiges to the Bulfer

I you mistakenly issue commands that make a great change to the buffer, you can often undo the change
without having to know precisely how it came about. This is done by using M-X Undo. 'ype M-X Undo<er>

and the change is undone. 1t does not matter if you have moved the cursor since you made the change; it is
undonc where it was originally done.

‘The first thing Undo docs is tell you what kind of change it plans to und. (kill, fill, undo. case-convert,
ctc). Then it asks whether to go ahcad. If you say "Y", the change is actually undone.

No: all changes to the euffer can be undone: deletion (as opposed to killing) can’t be, and changes in
indentation can’t be, nor can many forms of insertion (but they aren’t as imputtant since they don’t destroy
information). Also, a Replace String or Query Replace can’t be undone, which is a shame. 'I'he reason is that

actually they make many small changes, and Undo only knows how to remember one contiguous change.
Perhaps someday | will be able to fix this.

As a result, when you say Undo, it may undo something other than the latest change if the Inest change
was not undoable. This might scem to pile onc disaster on another, but it docsn't, because you can always

Undo the Undo if it didn’t help. But you zan avoid cven having to do that, if you look a2 what type of change
Undo says it will undo.

If you want to undo a considerable amount of editing, not just the last change, the Undo command can’t
help you, but M-X Revert File (See section 13.2 [Rever], page 57.) might be able o, If you have been writing

1 journal file (See section 24.4 [lournals], page 133.). you can replay the journal after deleting the part that
you don’t want,

-

bt SR RN i PRV B3 0 30U B et LA

b B L rthatn £ Gl Sl s e b ol

ihas

S Wt a8

1l b L e o PR i e o g uw&h‘s‘«"m“wﬂwu~w-’dﬂi b Il h s et o

=
=
E
g
H
i

Correcting Mistakes and EMACS Problems 133

24.4. Journal Files

A journal file is a record of ail the cominands you type during an cditing session. If you lose editing
because of a system crash, an EMACS bug, or a mistake on your part, and you have madc a journal file, you
can replay the journal or part of it to recover what you lost. Journal files offer an alternative to auto saving,
using less time and disk space if there is no crash, but requiring more time when you recover from a crash,
Sce section 13.3 [Auto Save), page 57.

24.4.1. Writing Journal Files

In order to make a journal file, you must load the JOURNAL. library and then exccute M-X Start Journal
lFile¢<fitenamed<erd. Immediately, most of the current status of EMACS is recorded in the journal file, and
all subsequent commands are recorded as they are typed. “This happens invisibly and silently. "The journal
file is made fully up to date on the disk after every S0th character, so the last 50 characters of type in is the
most you can lose.

The default filenames for the journal file are <home directoryd;Kuser name> JRNIL. There is rarely a

reason to use any other name, beca., you only need one journal file unless you are running two EMACSes
at the same time.

24.4.2, Replaying Journal Files

To replay the journal file, get a fresh EMACS, load JOURNAL, and do M-X Replay Journal

File#<filenamed><er>, The filename can usually be omitted since normally you will have used the defaults
when creating the journal,

After a delay while the files, buffers and libraries arc loaded as they were when the journal file was written,
EMACS will begin replaying the connands in the journal before your very eyes. Unlike keyboard macros,
which exccute invisibly until they arce finished, journal files display as they are cxecuted. This allows you to
sce how far the replay has gonc.‘ You car siop the process at any time by typing C-G. Aside from that, you
should not type anything on the keyboard while the replay is going on,

I the need for a replay is the result of a system crash or FMACS crash, then you probably want to replay
the whole file. "This is what happens natarally, 11 you are replaying because you made a great mistake, you
probably want to stop the replay before the mistake. “This is when it becomes useful o type C-G to stop the
replay. Alternatively, you can edit the journal file, and delete everything from the point of the mistake to the
end, before you replay it

Qs

W LR g I LS IR WA D L

I

AN et e by o kit bt TR

N

Y T

134

Once the replay is complete, save all your files immediately. Don’t tempt fate!

If you quit with C-G in the middle of a command while writing a journal file, there is no way to record in

the journal file how much of the command has alrcady been completed. So, when the journal is replayed.,.

EMACS has to ask you to fill in for it. The command which was interiupted wiil be replayed to completion;
then, you are given a recursive cediting level in which to restore the file to the desired state. ‘This happens only
if the C-G originally interrupted an exccuting command. C-G typed to discard an argument or partial

conuriand while EMACS is waiting for input can be and is replayed correctly without asking you for help.

21.4.3. Journal File Format

To edit a iournal file, you must know the format. It is designed to be mostly transparent,

The primary problem which the journal file format has to solve is how to represent 9-bit command
charactets in a file which can contain onty 7-hit ASCH characters. (We could hay 2 (illed the journal file with
9-bit characters, but then you would not be able to print it out or edit it). The solution we have used is to

represent cach command by two characters in the file.

So, « Control character is represe.:ted by a carct (") followed by the basic character, as in "~E" for
Control-E. This was caosen 1o be mnemonically significant. A Meta character is represented by "+
followed by the basic character, so that Meta-[is represented by "+[". A Control-Meta character is

represented by "** followed by the basic character, as in "*X" for C-M-X.

A command which is not Control or Meta is represented as a space followed by the command itself, except
that Return is represented by a CRLIF rather than a space and g carriage rcturn. ‘This prevents the journal file
from being one huge line, and makes insertion of text very recognizable: the text inserted appears in the

journal file alternating with spacces.
The Help character, which is not covered by the scheme as described so far, is represcoted by 77",

An asynchranous quit, which is a problem for replaying, is raypresented by a single character, a tG, while a
synchronous quit, vhich can be replayed reliabty, is represented by ":1G". EMACS considers a quit

synchronous, and uses ":1G" to 1ecord it, if EMACS was waiting for terminal input when the C-G was t,ped.

Your commands themselves are not the only information in the journal file. EMACS records other
information which is necessary in replaying the journal properly. ‘The colon character “:" indicates a block of
such information. Usually the extent of the block is casily recognizable because its contents do not resemble
the representations of commands described above. A large block of information starting with a colon appears
at the beginning of every journal file.

EMACS Manual for I'l'S Users

i %WWMWNWW' B TR PSP

i

!4

b

bt

i

Ay

Correcting Mistakes and EMACS Problems

R it “'”TVWW"‘Q 1“ '
.

Colons are also used to record the precise effects of certain commands such as C-V whose actions depend
on how the text was displayed on the screen. Since the effects of such commands are not completely
determined by the text, replaying the command could produce different results, especially if done on a
terminal with a different screen size. “The extra inforination recorded in the journal makes it possible to
replay these commands with fidclity.

A semicolon in the journal file begins a comment, placed there for the benefit of a human looking at the
journal. The comment ends at the beginnirg of the following line,

24.4.4. Warnings

Proper replaying of a journal file requires that all the surrounding circumstances be unchanged.

In particular, replaying begins by visiting all the files that were visited when the writing of the journal file

began; not the latest versions of these files, but the versions which were the latest at the cailier time. 1f those

WWW»WWWWWWWW‘ b

v

vaisions, which may no tonger be the latest, have been deleted, then replaying is impossible.

i

M

If your init file has been changed, the commands when replayed may not do what they did before,

These are the only things that can interfere with replay‘ag, as long as you start writing the journal file
immediately after starting EMACS. But as an cditing session becomes longer and files are saved, the journal

file contains increasing amounts of waste in the forat of conimands whose effects are already safe in the newer

e
Il

versions of the edited files. Replaying the journal will replay all these commands wastefully to gencrate files
identical to those alrcady saved, before comiing to the last part of the session which provides the rcason for
replaying. ‘Therefore it becomes very desirable to start ¢ new joarnal file. However, many more precautions
must be taken to insure proper replaying of a journal file which is started after EMACS has been used for a

while, These precautions arc described here. If you cannot follow them, you must make a journal checkpoint
(sce below).

1 v k00

If any buffer containg text which is not saved in a file at the time the journal file is started, it is impossible
to replay the journal correctly. ‘This problem cannot possibly be overcome. To avoid it, M-X Start Journal
File offers to save all buffers before actually starting tc journal,

i b 4 b

Another problem comes from the kill ring and the other ways in which EMACS remembers inforntation

from previous commands, 1 any such information which originated before starting the journal file is used
after starting it, the journal file caanot be replayed. For example, suppaose you il a paragraph, stat a journal
file, and then do M-X Unde? When the journal is replayed, it will stait by doing M-X Undo, but it won't
know what to undo. It is up to you not to do anything that would cause such a problem. [t should not be

hard. 1t would be possible to climinate this problem by clearing out all such d sta structures when a journal

A —_—

EMACS Manual tor I'l'S Users

file is started, if users would prefer that.

A more difficult problem comes from customization. If you change an option or redefine a command,
then start a journal file, the journal file will have no record of the change. 1t will not replay correctly unless
you remember to make the same change beforchand. Customizations madce in an init file do not cause a
problem because the init file has also been run when the journal file is replayed. Customizations made
directly by the user while the journal file is being written are also no problem because replaying will make the
samc changes at the right times. However, a customization made while a journal file is being written willbe a

problem if a new journal file is started.

24.4.5. Journal Checkpoints

The only cure for the problems of starting a journal in mid-session is to record the complete state of
EMACS at the the time the journal is begun. "This is not done normally because it is slow: however, you can
do this if you wish by giving M-X Start Journal File a numeric argument. This writes the complete state of
EMACS into the file <home directory>: 1S ESAVE. To replay the joural, tun ESAVE, the saved checkpoint,
instead of FMACS: then load JOURNAL and do M-X Replay Journal File as described above. Be sure to
delete the cheekpoint if you arc finished with it, since it tends to be kuge. Delete them also when you log out; *:*
it may be possible to have a command file which deletes them automatically when you log out. Checkpoint

files more than a day old will probubly be deleted by others without notice.

24.5. Reporting Bugs

There will be times when you encounter a bug in EMACS. To get it fixed, you must report it. It is your

duty to do so; but you must know when to do su and how if it is to be constructive.

T

24.5.1. When Is There a ug

IF EMACS exccutes an -llegal instruction, or dics with an operating system error message that indicates a

problem in the program (as opposed to "disk {ull”), then itis certainly a bug.

If FMACS updates the display in a way that does not correspond to what is in the bufier, then it is

certainly a bug. I a command scems to do the wrong thing but the problem is gane if you type C-1., then it is

m
ol
HRANIN

e T
'!y|"“|‘|vl.‘h

acase of incorrect display updating.

Taking forever to complete a command can be a bug, but you must make certain that it was really

EMACS’s fault. Some commands simply take a long time. Quit or restart EMACS and type Help 1. to sce

W%%tl MW}M“ TR
TN A ISR A) it 18 ¢

= Jeak B NE

== T o= I e i o e

Cotrecting Mistakes and KEMACS Problems 137

whether the keyboard or line noise garbled the input; if the input was such that you know it should have been
processed quickly, report a bug. If you don’t know, try to find someone who docs know.

If a command you are familiar with causcs an EMACS crror message in a case where its usual definition

ought to be reasonable, it is probably a bug.

If a command does the wrong thing, that is a bug. But be sure you know for certain what it ought to have
donc. If you aren’t familiar with the command, or don’t know for certain how the command b supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show thie problem to

someenc who knows for certain.

Finally. a command’s intended definition may not be best for editing with. This is a very important sort of
problem, but it is also a matter of judgement. Also, it is casy to come to such « conclusion out of ignorance of
some of the existing features. t is probably best not to complain about such a problem until you have
checked the documentation in the usual ways (INFO and lelp), feel confident that you understand it, and
know for certain that what you want is not available, If you feel confused about the documentation instead,
then you dun't have grounds for an opinion about whether the command’s definition is optimal. Make sure
you read it through and check the index or the menus for all references to subjects you don’t fully understand.
If you have done this diligently aad are still confused, or if you finally understand but think you could have
said it better, then you have a constructive complaint to make abowr the doctmentation. 1Uis just as important

to report documentation bugs as program bugs.

24.5.2. Tlow to Report a Bug

When you decide that there is a bug, it is important to report it and to report it in a way which is useful.
What is most uscful is an exact description of what commands you type, starting with a fresh EMACS just

loaded, until the problem happens.

The most important principle in reporting a bug is to report facts, not hypotheses or conditions. [t is
always casicr to report the facts, but people seem to prefer to strain to think up explanations and report them
instcad. If the explanations are based on gucsses about how EMACS is implemented, they will be uscless; we
will have to try to figure out what the facts must have been to lead to such speculations. Sometimes this is

impossible. But in any case, it is unnccessary work for us.

IFor example, suppose that you type C-X C-V GLORP:BAZ UGHKerD, visiting a file which (you know)
happens to be rather large, and EMACS prints out "1 feel pretty today”. The best way to report the bug is
with a sentence like the preceding one, because it gives all the-fucts and nothing but the facts.

Do not assume that the problem is due to the size of the file and say "When I visit a large file, EMACS

AT

I L L N)
———

LRM e R AL T 0 I 4 AL

D TR

W e

.

Lt Ml Shl , b L L g T , , .
W ; .Mﬁ‘ﬂ%{"ﬂmlhﬁmﬁiu%ﬂmﬁ%ﬁw1\!‘4&‘»!%‘-“‘“ A oA b A 5B TR P 1 D dl T e 1t el e P o L Bt s o ot 10154 8 ol

b

'

e s s et e

138 EMACS Manual for I't'S Users

prints out '} feel pretty today™. This is what we mean by "gucessing cxplanations™. “The problem is just as
likely to be due to the fact that there is a 7" in the filename. I this is so. then when we got yoar report, we
would try out the problem with son.e “big file”, probably with no "Z” in its name, and not find anything
wrong. ‘There is no way in the waorld that we could guess that we should try visiting a file with a *Z" in its

namece.

Alternatively. the problem might be due te the fact <t the file starts with exactly 25 spaces. For this
reason, you should make sure that you don’t change the fi'c untii we have looked at it. Suppuose the problem
onhy vccurs when you have typed the C-X C-A conunand previously? ‘This is why we ask vou to give the

cxact sequence of characters you typed since toading the EMACS.

You should not even say “visit the file ..." instead ¢f "C-X C-V" unless you know that it makes no
difference which visiting command is used. Similarly, rather than saying "if | hine three characters on the
line™. say "after | type <cr> A B C <erd C-P", if that is the way you entered the text. A journal file containing

the commandas you typed to reproduce the bug is a very good form of report.

Send the bug report to BUG-EMACS@MIT-AL if you are on the Aipanct or to the author (sec the
preface for the address).

It you are not in Fundamental mode when the problem cecurs you should say what mode you are in.

-

Be sure to say what version of EMACS and THCO ate running. I you don’t know, type Meta-Altmode

QeIF'MACS Versiond = IS Version® = ¢4 and EMACS will print them out. (This is a use of the minibuffer.
See section 23 [Minibuffer], page 127.)

If the bug occurred in a customized EMACS, or with several optional libraries loaded, it is helpfil to try to
reproduce the bug in a more standard EMACS with fewer librarics loaded. It is best if you can make the
problem happen in a completely standard EMACS with no optional libraries. If the problemn docs aof occur
in a standard EMACS, it is very important to report that fact, because otherwise we will try (6 debug it in a
standard EMACS, not find the problein, and give up. If the probiem doces depend o= an init file, then you
should make sure it is not a bug in the init file by complaining to the person who wrote the file, first. He
should cheek over his code. and verify the definitions of the TECO cominund_s he is using by looking in
INFO;TECORD >. "Then if he verifies that the bug i§ in EMACS he should report it. We cannot be

responsible for maintaining users’ init files; we might not even be able to tell what they are supposed to do.

It you can tell us a way Lo causc the problem without reading in any files, please do so. This makes it rauch
casier to debug. 1 you do need files, make sure you arrange for us to sce their exact contents. For example, it
can often matter whether there are spaces at the ends of lines, or a line separator after the last line in the

buffer (nothing ought to care whether the Tast linc is terminated, but tell that to the bugs).

L R TR

il

T, oA W ARSI

Correcting Mistakes and EMACS Problems 139

IFEMACS gets an operating system error message, such as for an illegal instruction, then you can probably
recover by restarting it. But before doing so, you should make a dump file. Do this by saying :PDUMP
CRASH:EMACS >. Bce sure to report exactly all the numbers printed out with the error message. Also type
JPC/ and include DDT's response in your report. If you restart or continue the EMACS before saving this
information, the trail will be covered and it will probably be too late to find out what happened.

A dump is also useful if EMACS gets into a wedged state in which commands that usually work do strange
things.

L ol bt Y

bk 5 i e L Bt A R

e T R e

140 EMACS Manual for I't'S Users

]

:
£
£
¥
i
¥

Word Abbreviation Input 141

25. Word Abbreviation Input

Waord Abbrev mode allows the EMACS user to abbreviate text with a single "word”, with EMACS
cxpanding the abbreviation automatically as soun as you have finished the abbreviation. with cont:ol over

capitalization of the expanded string.

Abbrevs are also uscful for correcting commonly misspelled or mistyped words (e.g. “thier™ could expand
to "their”), and for uppercasing words like "EMACS™ (abbrev "emacs” could cxpand to “EMACS™).

To use this mode, just do M-X Word Abbrev Mode<er>. (Ancthier M-X Word Abbrey Modeder) will tura
the mode off; it toggles.)

-

For example, in wiiting this ducumentation | could have defined “wian” to be an abbreviation for "word
abbrey made”. After only typing the letters “wan”, | sce just that, “wam”, but if 1 then finish the word by
tyning space or period or any of the text break-charactess, the "wam™ is replaced by (and redispiays as) “word
abbrey mode”. 1f 1 capitalize the abbrev, "Wam™, the expansion is capitalized: “Word abbrev mode”. 1f]
capitalize the whole abbrey, WAM®™, cach word in the expansion is capitalized: "Word Abbrey Mode”. In
this particurar example, though 1 would define "wam™ to expand 0 "Word Abbrev mode” since it is always

to be capitalized that way. .
Thus. L can type "1 am in wzm now™ and end up with “1 am in Word Abbrev mode now™.

Word Abbrev made does not interfere with the use of major modes, e.g. Text, Lisp, THECO, PLI, or minor
muades, c.g. Auto Fill. Those modes (or the user) may redefine what functions are to be called by characters;
that docs not interfere with Word Abbrev mode.

There are two kinds of word abbreviations: mode and glubal. A mode word abbrev causes expansion in
only onc major mode (for instance only in Text mode), while a glubal word abbrev causes expansion in all
major mades. If somce abbrey is both 2 mode word abbrev for the current mode and a glohal word abbrey,

the mode word abbrev expansion takes precedence.

IFor instance, you might want an abbrev "foo” for "find outer otter” in Text mode, an abbrey "foo” for
"IFINAG!LE-OPPOSING-OPINIONS" in Lisp, and an abbrev "foo” for "meta-syntactic variable™ m any
other mode (the global word abbrev).

Word abbrevs can be defined one at a time (adding them as you think of them), or many at a tinie {from a
definition list). You can save them in a file and rew.” them back later. Word abbrev definitions stay acound
even while you're not in Word Abbrev made, though they den't expand.

WA e

FVITRNIN

2 1 PATEN e e

o i

LA 8 D

S

e oAby et

142 EMACS Manual for I'lS Users

Word abbrevs «an be killed cither singly. or by cditing the current definition list.

25.1. Basic Usage

C-XC-A Definc a mode abbrev for some text before point.

CX + Define a global abbrev for some text before point.

C-XC-H Define expansion for mode abbrev before point.

C-X- Define expansion for global abbrev hefore point. 1
C-M-Space Expand abbrev without inscrting anything. :
M- Mark a prefix to be glued 1o an abbrey following. T
C-XU Unexpand the last abbrev, erundo a C-X U.

M-X List Werd Abbrevs<er>
Shows definiticas of all abbrevs.

M-X Edit Word Abbrevséen>
L.ets you cdit the definition list dircctly.

M-X Read Word Abbrev File#<filenameXXce>
Defines word abbreve from a definition file.

T N O e e e st —

M-X Write Word Abbrev File#<filenameXc>
Makes a definition file from current abbrev definitions.

Readable Word Abbrev Files
Option variable to control sbbrev file format.

"Ihis section describes the most common use of Word Abbrev mode. If you don't read any more than this,
you can still use Word Abbrev mode quite effectively.

Y h‘:@?{!‘

25.1.1. Adding Word Abbrevs

"’4% i ““«W

Wiy

C-X C-A (R Add Mode Waord Abbrav) defines a moade abbiey for the word before point (this does not

include any punctuation between that word and point. thongh). it prints the word before puint in the ccho

S A b s s e

arca and ask you jor that word’s abbreviation. Type the abbrev (in the echo area, editing a little with Rubout

and C-U) followed by a Return. Thie abbrev must de 2 “word™: it must contain only letters and digits. If =

B

you'd rather define a global abbrey, use C-X 4 (*R Add Global Word Abbrev), which works similarly. =

sg

You can redefine an abbrev by C-X C-A or C-X -+, but it tells you the old expansicn and ask you to J‘%

confirm the redefinition. Typz Y or N, R E

"T'a d2fine an abheev for mare than one word of text, give C-X C-A or C-X + a numeric argument: an E
argument greater than (0 means the ex pansion is that many words before point; an argument of 0 means to use 7

EABIIGRIRRIAS o * 9 i 0

Word Abbreviation Input 143

the region (between point and mark). (By using the region specification you can make an abbrev for any text,
not just a sequence of words.) The message in the echo arca provides you with confirmation of just what the
expansion will be; e.g. you might sce:

Text Abbrev for "this is the expansion”:

Sametimies you may think you alrcady had an abbrev for some text, use it, and sce that it didn’t expand. In
this case, the C-X C-H (R Inverse Add Mode Word Abbrev) or C-X - (“R Inverse Add Global Word
Abbrev) comiands are helpful: they ask you to type in an expansion rather than an abbrev. In addition to

defining the abbrev, they also cxpand it. If you give them a numeric argument, n, they use the ath word
before point as the abbrev.

You can kill abbrers {causc them to ro longer expand) by giving a negative numeric zsgument to C-X C-A
or C-X +. Forinstance, to kill the global abbrev “foo” type C-U - C-X -+ fouero.

25.1.2. Controlling Abbrev Exgansion

When an abbrev expands, the capitalization of the expansion is determined by the capitalization of the
abbrey: I the abbrev is all lowercase, the cxpansion is as defined. 1f the abbrev's Ist letter is uppercase, the
expansion’s st leti- r is too. If the abbrev is all uppeicase, there are two possibilities: if the expansion is a

single word., it is all-uppercased: otherwise, cach of its words has its first Ictter uppercased {c.g. for use in a
title).

Abbrevs normally expand when you type some purctuation character; the abbrev cxpands and the
punctuation character is inscrted. “There are other ways of expanding abbrevs: C-M-Space ("R Abbrev
Expand Only) causces the abbrey just before point to be expanded without inserting any other character. M-
(R Word Abbrev Prefix Mark) allows you to “gluc” an abbrev onto any profix: suppuose you have the
abbrev “comunittee” for “"committee™, and wish 16 insert "intercommitice **; tys:e "inter”, M-" (you will now

see “inter-"), and thea "committes 7 “inter-comim " becomes “interconunittee ™.

25.1.3. Unexpanding Abbrevs

C-X U (R Uacxpand L.ast Word) “uncxpands” the last abbrev's expansion, replacing the last expansion
with the abbrev that caused it. If any auto-filling was done because of the expansion (you had Auto Fill mode
on), that teo is undone. If you type another C-X U, the first onc is "undonc™ and the abbrey is expanded
again. (Sumctimes you may find that C-X U uncxpands an abbrev Iater than the one you're loeking at. In

this case, do another C-X U and ge- back and manually correct the carlier expansion. Only the fast expansion
can be undonce.)

sl e o i 0 e 6l et

ATl ol o il e

itadelt

i

Al

Aab b L

Sl e

! ddin

i S

b

i

10 o A Y T e

144

EMACS Manual for I'+FS Users

If you know beforchond that a word will expand, and want to prevent it, you can simply “quote” the

punctuation character with C-Q. kg
expanding.

25.1.4. Listing \bbrevs

M-X List Word Abbrevs fists all currently defined abbrevs. An abbrev “foo™ that expands to “tais is an
abbhicy” in Toxt made and has been expanded J (the "usage count™) times, is listed as:

foo: (Text) 3 "this is an abbrev”

An abbrev “gfuo” which expands 10 "this &2 = alobal abbrev” in all modes, expanded 11 times, is listed as:

gfoo: 11 "this is a glocbal abbrev”

Note that any usc of the double-quote character (') inside an cxpansion is doubled. io distinguish the use

of ” from the s that surround the whole cxpansion. ‘Thus if the glohal abbrev "helpk™ expands to "kl “Help”
charauter’, it s listed as

helpk: 3 "the ""Help"” character”

25.1.5. Fditing the Definition List

M-X Edit Word Abbrevs places you in a recursive editing fevel, cditing the curreat word abbrev definition
list. The abbrevs appear in the susine format used by List Word Abbrevs. When you oxit (via C-M-J), the
current word abbrevs will be redefined from the edited definition sist: any abbrevs that have been deleted
from the list are killed, new ones added to 1ac list arc defined, and old oncs changed are muodified. In eficct,
after cxiting the Edit Word Abbrev editing fevel, all previously-defined word abbrevs are killed, and the

cdited list is used o define new abbrevs, Typing C-] (Abort Recursive Edit) aborts Edis Word Abbros,
without killing or redefining any abbrevs.

25.1.6. Saving Abbrev Definitions

M-X Write Word Abbrev File¢ilenamed<cer> writes an "abbrav definition file” which contains the
definitions of all the abbrevs in your EMACS now. M-X Read Word Abbiey Fite#<Rlenaneder) reads in
such a file :and defines the abbrevs. (Other abbrevs alrcady defined are ot affected unless the file redcfines
them.) if you don’t supply a filenamec, the last onc you used in cither of these is used again, originally

defaulung 0 WORDARB DEFNS. With these two commands, you can save the abbrevs you defined in one
EMACS and restore them in another EMACS another day.

—— ——— e £

typing “comm”, a C-Q, and then " gives “comm.” without

A o o

Wit d i bbbt b) S e

L

§

e

=

=
=

:
£
5
£
T
H
Z
:
T
L
A

-

g = g T oA

T ————— I L e

= 7 = — iy = g x gy <3075 z
e e E e IR RS TS

- PR 3 =

Word Abbreviation lnput . 145

The format of the definition file is designed for fast loading, not case of human readability. (But if you
have to, you can figure it out enough to read or even edit it.) If you want M-X Write Word Abbrev Fiie to
write a human-readable version instead, sct the option Readabic Word Abbrey Files to 1. (M-X Read Word
Abbrev File will be able to scad this, but not as fast.)

If you have an init file, you might want to put TECO code like the following into it, in order to turn on
Ward Abbrev mode and have your abbrey definition file automatically read when EMACS stanis up:

Im(m.mWord Abbrev Mode#d)
m{m.mRead Word Abbrev File¢)WORDAB DEFNS¢

25.2. Advanced Usage

The use of Word Abbrev mode as discussed in the previous section suffices for most uscrs. However, some
usess who use Word Abbrey imade a lot or have highly tilored environments may desire more flexibilivy, or

need more power to handle extreme situations, than the basic commands provide.

25.2.1. Alternatives and Customizations

M-X Make Word Abbrevé<abbrev>#<expansion>4<mode><cr>
M-X Kill Atl Word Abbrevsier>

M-X Make These Characters Expandé<characters><crd>

~R Kill Mode Word Abbrev

~R Kill Global Word Abbrev

Only Global Abbrevs
Option variable if you only use globals,

Additional Abbrev Expanders
Variable for adding a few more expanders.

WORDAB Ins Chars
Variable for replacing entire set of expanders,

The basic coimmmands for defining a new mode abbrev, C-X C-A ("R Add Mode Word Abbrev) and C-X
C-H (*R lnverse Add Mode Word Abbrev), work only in the current mode. A more general command is
M-X Make Word Abbrev which takes three string arguments: the first is the abbrev, the second is the
expansion, and the third is the mode (e.g. "Text"). "This command can also define global abbrevs, by

;
LTETRD 2oy »cm:wm"a*-m'm*h

o e

146

EMACS Manual for I'FS Users

wyn

providing "*" as the mode name.

M-X Kill All Word Abbrevs<er> is a very quick way of Killing cvery abbrev currently defined. After this
command, no abbrey will expand. (A slower but more carcful way is with M-X Edit Word Abbrevs.)

‘The functions *R Kill Mode Word Abbrev and ~R Kill Global Word Abbrev exist, but are not attached to
any commands by default. If you want to avoid specifying negative arguments to C-X C-A (*R Add Mode
Word Abbrev) and C-X + (*R Add Global Word Abbrev), you should attach these functions to characters.
You could use the function M-X Set Key (Sce section 5.2 {Set Key]. page 21.) to do this or have an init or
EVARS file set them (See section 22.7 [Init], page 120.).

i you prefer to use only global abbievs then you should set the option variable Only Global Abbrevs to 1.
You car do this after or before turning on Word Abbrev mode; it makes no diffcience. This causes the global
abbiey definers which would otherwise be on C-X + (*R Add Global Word Abbrev) and C-X - (*R Inverse
Add Global Wotd Abbrev) to be on the casicr to type characters C-X C-A and C-X C-11. In addition, the
checking done whenever you type an expander character (e.g. the punctuation characters) us about three

times faster {for the no-cxpansion case, which is what happens most of the time).

Nomally, the following chatacters cause expansion (followed by whatever they would normally do were
Waord Abbiev mode off* c.g. insert themselves): 1~@ #:3%&*-_ = +[JON:"™"{}.<.>'/? and Space, Return,
and ‘Tab. You can, however, specily additional characters to cause expansion (digits, for instance, or greck
letcers on keyboards with Top-keys). M-X Make These Characters Fxpand4<characters>cr> adds the
characters in the string argument o the list of expanders. Alternatively, casicr for init and EVARS files, you
can set the variable Additional Abbtev Expanders to contain the string of characters. I you wish to
completely replace the set of characters that cause expansion, sct the variable WORDAR Ins Chars in your

init fil2. Sce section 22.7 [init]. page 120, for details on setting variables in init and EVARS files.

25.2.2. Manipulating Definition Lists

One rcason some users have for manipulating the definition lists is to provide more structure to the

definition environment than just the mode-global structure provided normally, e.g. to group togethet in a file
those abbrevs pertaining to one topic.

M-X Insert Word Abbrevs<cr) inserts into the buffer a list of the current word abbrev definitions, in the
format that M-X List Word Abbrevs uses.

M-X Define Word Abbrevs<cr> defines a sct of word abbrevs fiom a definition list in the buffer. There

should be nothing clse besides the definition list in the buffer; or, ifithere is, you must narrow the buffer to
just the definition list. See section 17 [Narrowing], page 77.

B SN UARRND, NS
u

ot 1 b 1S 4

it b o 9]

UL i bt LR

b bR

AN e b

s e

=

y
|
)
v
) g
'
i
1
3
!
!
)
|
)

T o g g e

e aee PP MMWM%M:;
|
|

Word Abbreviation Input

25.2.3. Dealing with Many Abbrevs

Some use:s rapidly build up 4 very large number of abbrevs. This causes a couple of problems that have to
be dealt with in ways not discussed in the basic usage section: First, defining all thosc abbrevs when EMACS
starts up can become too slow; this problem is discussed in the next section. Sccond, the commands that deal
with the definition Tists become unwicldy. The current release of the Word Abbrev mode pacaage only has
one command directly dealing with large definition lists:

M-X Word Abbrev Aproposé<stringd<cr> shows you the definitions of just the abbrev definitions
containing <stringd (in the abbrev, in the mode, or in the expansion). The aigument is actvally a 'TECO
scarch suing (See section 19.3 [TECO scarch strings], page 85.). 1f you want to see the abbrevs which contain
cither Gstring1> or Cstring2), separate :hé strings with a Control-Q; e.g. to see abbrey definitions containing

cither "defn" or "wab"”, do M-X Word Abbrev AproposédefntOwab<crd.

M-X Word Abbrev Apropos only works "approximately” though: it may miss some definitions {those
defined by Edit Word Abbrevs, Define Word Abbrevs, or human-rcadable definition files), and it may also

find more than you want in some rare cases. ‘These problems are all related to efficiency questions.

25.2.4. Dumped EMACS Environments

M-X Write Word Abbrev Filed<filenamed<crd
Writes a file of all abbrev definitions, before dumping,

: M-X Read Word Abbrev File¢<filenameX<cer>
Reads file of abbrey definitions at init-time.

A A M AP e b

M-X Write Incremental Ward Abbrey File&filenamed<cr>
Writes a file of changed abbrev definitions, since dunping.

X

ety v

M-X Read Incremental Word Abbrev Ifile#<{ilename><ced
Reads file of changed abbrev definitions at smrtup-timc.

Some users with highly customized EMACS environments (their init files take a fong time to run) "dump

v > ol bbbl s

out” their environments, in effect creating another EMACS-like program (the "dump”) which starts up mnuch

faster. (For instance, 1.7 cpu scconds instead of 70.5 cpu seconds. Sce the file INFO:CONV >, for more

AR ORI

details about dumping environments.) Since the dumped enviromment contains word abbrey delinitions, a
dumped environment with hundreds of abbrevs can start just as quickly as if' it had none. (But reading all
. these abbrevs with M-X Read Word Abbrev File in the init file originally took a long time.) Thus for these .
users, it is important that at dump-startup time, only to read in those abbrevs which were changed or defined

since the environment was dumped out. A file which contains only these new abbrev’s definitions is called an

i e P s o emb o

T

148 EMACS Manual for I'T'S Users

incremental word abbrev file. (It also can specify that certain abbrevs are 6 be killed if they were defined
when the environment was dumped out, but subsequently killed.)

‘The startup for the dump should use the Read Incremental Word Abbrev File function instead of Read
Word Abbrev File. 1t takes the filename as a string argument, which defaults to INCABS >. ‘The cominand
M-X Write Incremental Word Abbrev File4<filecname><cr> writes such a file, writing out those abbrevs more
recent than the dump (including ones read by Read Incremental Word Abbrev File and ones defined in the

current editing session). You might want to call this conanand after defining some abbrevs, before exiting
EMACS. (Plans are afoot to have this be done automatically as an option.)

When you want to dump out a new EMACS, first create a new, complete word abbrev definition file using
M-X Writc Word Abbrev File. "This file now has «ff abbrevs in it, and you can thus delete any incremental
definttion files you have, Then start up the new EMACS from scratch, using the init file, and dump it. (The
it file in general should call Read Worg Abbrev File and then also call Read Incremental Word Abbrev
File, just in case there are both kinds of files around. “The startup calls only Read Incremental Word Abbrev

I<ile.) Note that o handie the possibility of the incremental file not existing, the TECO code in the staitup
subrowtine can look like (though soon this won't be necessary):
e?<filename>%"e

m(m.mRead Incremental Word Abbrev Fileé¢)<filename>+¢’

25.3. Teco Details for Extension Writers

‘This scction documents some details that users programming extensions may need o know, in order to
interact properly with Word Abbrev mode opceration or to build upon it.

"There are two hooks that you can provide: ‘The variable WORDAB Setup Hook, if non-0, is exccuted
when the WORDAB library is loaded and sets itself up. (M-X Word Abbrev Mode<er) in the default
I-MACS caviromment auto-loads the WORDARB library.)

"The variable Word Abbrev Hook, if non-0, is exccuted when Word Abbrev mode is turned on or off. It is
passed a numeric argument which is positive if Word Abbrev mode is being turned on, and 0 or negative if it
is being turned ofl. Also, if this hook cxists, Word Abbrev mode does not redefine any characters; it assuines

the hook will do that. Thus C-X C-A, C-X C-H, C-X +, C-X -, M-", C-M-Spuce, and C-X U will not be
bound unless the hook binds them,

"The abbrev definers, ¢.g. C-X C-A (*R Add Mode Word Abbrev), check to sce if the volatile i'1:CO mark,

fs~RMark4, is sct; if it is, then the region between point and fs*RMark¢ is used as the expansion. 'The
intention is to provide a mechanism for simple but safe expansion marking.

4
vl il vl .(lmhulku..uuﬂg

g v b AT

e o

el

i

1
‘
.

SRR

Word Abbreviation Input

Finally, the general way that Word Abbrev mode works is this: at certain times, when characters are likely

- -

to have been reconnected, a Word Abbrev mode subroutine looks at cach «f the expander characters to see if
they arc running n expander or have been rebound. If they don’t have expanders, they are reset to an
expander function (which first checks for expansion and then calls the "old" function, what the character was
bound to before). The problem is that it is not really possible to efficiently catch all the times that characters
of interest are rehound. So. as a good guess, Word Abbrev mode looks at these characters when the & Set
Made Line function is called. ‘This happens when major or minor modes change, when buffer switching
happens, and when Set Key is used. "These are the standard times that connections are changed. However,
the extension writer must be carcful about rebinding expander characters. If an extension might do this, it

should do HsMode Change¢ to cause expansions to be redefined.

e

© bl O s oy

© e

el s wicn

R Py

N

W it

MACS Manual for F1'S Users

5
.
o

150

‘The PICTURE Subsystem, an Editor for ‘T'ext Pictures 181

20. The PICTURE Subsystem, an Editor for Text Pictures

If you want to create a picture made out of text characters (for example, a picture of the division of a

register into ficlds, as a comment in a program), the PICTURE package can make it casier.

Do M-X Load Lib4PICTUREKcr), and then M-X Edit Picture is available. Do M-X dit Picture with
point and tnark surrounding the picture to be edited. Edit Picture eaters a recursive editing level (which you
cxit with C-M-C, as usual) in which certain cemmands are redefined to make picture cditing more

convenient.

While you arc inside Iidit Picture, all the lines of the picture are padded out to the margin with spaces.
This makes two-dimensional motion very convenient; C-B and C-FF move horizontally, and C-N and C-P
move vertically without the inaccuracy of a ragged right margin. When you 2xit from Edit Picture, spaces at
the ends of lines are removed. Nothing stops you from moving outside the bounds of the picture, but if you

make any changces there slightly random things may happen.

Fdit Picture makes alteration of the picture convenient by redefining the way printing characters and
Rubout work. Printing characters are defined to replace (overwrite) rather than inseting themselves.
Rubout is defined to undo a printing character: it replaces the previous character with a space, and moves

back toit.

Return is defined to nune to the beginning of the next line. “This mukes it usable for smoving to the next
apparently blank (but actually filled with nothing hut spaces) line, just as you use Return nonnally with lincs

that are really empty. C-O creates new blank lines after point, but they are created full of spaccs.

"Tab is redefined to indent (by moving over spaces, not inserting them) to under the first non-space on the

previous line. Lincfeed is as usual equivalent to Return followed by Tab.

[Four movement-control commands cxist to aid in drawing vertical or horizontal lincs: If you give the
command M-X Up Picture Movement, cach character you type thereafler will cause the cursor to move up
instead of to the right. Thus if you want to draw a line of dashes up to some point, you can give the conumand
Up Picture Movement. type cnough dashes to make the line, and then give the command Right Picture
Movement to put things back to normal. Similarly, there are functions to cause downward and leftward
movement: Down Picture Movement and Left Picture Movement. ‘These commands remain in effect only
until you exit the Edit Picture function, (One final note: you can use these cursor movement commands

outside of Lidit Picture too, even when not in Ovecwrite mode. You have to be somewlat carclul though.)

Possible futwe extensions mclude alteration of the kill and un-kill commands to replace instead of deleting

EMACS Manual tor I'lS Users

and inserting, and to handle rectangles if two corners are specified using point and the mark.

ol ish gy

Sorting Functions 153

27. Sorting Functions

The SORT library contains functions called Sort Lines, Sort Paragraphs and Sort Pages, to sor the region

alphabetically line by line, paragraph by paragraph or page by page. For example, Sort Lines rearranges the
lines in the region so that they are in alphabetical order.

Paragraphs arc defined in the same way as for the paragraph-motion functions (Sce scction 11.2
[Paragraphs], page 44.) and pages arc defined as for the page motion commands (Sce section 18 [Paging],

page 79.). All of these functions can be undone by the Undo command (Sce section 24.3 [Undo}, page 132.).
They take no arguments., ’

i

A4 oA St b

ot

ALY

ol 4 K P 4 M i

i

s i

i

¢

=

TR AR Y

v

SREERRMERY

T e e S TR LA RO TR TN, m AT TR MR

*»
N
5
172)
-
:) AvA
— ,\ |
- , 5
L ,
g !
=
=
n ,
a !
: ,
wtb.. _
M !
=
=
; »
f L
b 3
Ly
|
I
,
i
.
i
)
, , _h
W
, H
| |
‘ o
,)
| ' 4
Ll ~r |
. 5 |
; bl
A |
.
| {_N .

“articular Types of Terminals : 155

Appendix 1
Particular Types of Terminals

A g x50 bt~ B 8 4

b i o L

I.1. Ideal Keyboards

An ideal EMACS keyboard can be recognized because it has a Control key and a Meta key on cach side,
with another key labelled Top above them.

On an idecal keyboard, to type any character in the 9-bit character set. hold down Control or Meta as
appropriate while typing the key for the rest of the character. To type C-M-K, type K while holding down
Control and Mcta.

You will notice that there is a key labeled "Escape” and a key labeled "Alt”. "The Alimode character is the
one labeled “"Alt". “Escape™ has other functions entirely: it is handled by T'T'S and has nothing to do with
1EIMACS. While we arc talking about keys handled by I'TS, un Meta keyboards the way to interrupt a
program is CALL, rather than Control-Z, and entering communicate mode uses the BACK-NEXT key rather
than Control-_. CALL echoes as 17, but if you type C 7, it is just an ordinary character which happens to be
an EMACS commead to return to the superior. Similarly, BACK-NEXT echues as t_ but if you type 1_ itis

just an EMACS comnumd which happens not to be defined.

The key labeled ™Top™ is an exua shift key. 1t is used (o produce the peculiar "SALL” graphics characters
which appear on the same keys as the letters. The "Shift” key gets you upper-case letters, but "{op” gets you
the SAIL characters. As EMACS commands, these characters are normally sclf-inserting, like all printing
characters. But once inserted, SAML. characters are really the same as ASCU control characters, and since
characters in files arc just 7 bits there is no way to tell them apart. EMACS can display thein cither as ASCH
control characters, using an uparrow or caret to indicate them, or it can display them as SAH. characters,
whichever you like. The character Control-Alpha (Alpha is a SAH. character) toggles the choice. You can
only type this command on a terminal with a Top key, but since only such terminals can display SALL

characters anywaty this is no loss.

One other thing you can do with the "Top key is type the Help character, which is ‘Top-1I on these
keybourds. BACK-NEXTH also vorks, though.

IFor inserting an Altmode, on an ideal kevboard you can type C-M-Altmode. C-Altmode is a synonym for
C-M-C(~R Exit).

‘The "bit prefix"” characters that you must use on other terminals are also available on terminals with Meta

keys, in case you find them mor2 convenient or get into habits on those other tenminals.

L L s A SR S

156

EMACS Manual for I'L'S Users

To type numeric arguments on these keyboards. type the digits or minus sign while holding down cither
Control or Meta.

L.2. Keyboards with an "Edit" key

Keyboards with Edit keys probably belong to Datamedia or “I'cleray terminals. The Edit and Control keys
are a pair of shift keys. Use the Control key to type Control characters and the Edit key to type Meta

characters. ‘Thus, the 9-bit EMACS character C-M-Q is typed by striking the “Q* key while holding down
“Fdit" and "Control".

While the Edit key is a true independent bit which can be combined with anything clse you can type, the
Cuontrol key really means "ASCH control”. "Thus, the anly Control characters you can type are those which
exist in ASCIL. his includes C-A through C-Y, C-], C-@, C-\, and C-~. C-Z and C-_ cau: be typed on the
terminal but they are intercepted by the operating system and therefore uninailable as FMATS commands.
C-[is not available because its spot in ASCH is pre-empted by Altmode. “The corresponding Meia commands
arc also hard to type. If vou can’t type C-; directly. then you also can't type C-M-; directly.

Though you can’t type C-; dircctly, you can use the bit prefix character C-~ and type C-~ ;. Similarly,
while you can't type C-M-2, you can use the Control-Meta prefi- €-C and ype C-C 1. Because C-~ is itself
awkward, we hanve designed the EMACS command set so that the hard-to-type Controf (non-Meta) charicters
are rarely needed.

In arder to type the Help character you must actually type two characters. C-_ and H. C-_ is an cscape

character for I'1S itself, and C-_ followed by H causes i'1S to give the Help character as input to EMACS.

To type numeric arguments, it is best to type the digits or rminus sign while holding down the Edit key.

I.3. ASCH Keyboards

An ASCIH keyboard allows you to type in once keystoke only the conunand characters with cquivalents in
ASCil. No Meta characters are possible, and not all Control characters are possible cither. "The Control
chavacters which you can type dircetly are C-A through C-Y, C-}, C-@, C-\, and C-~. C-Zand C-_ can he
typed on the terminal but they are intercented by the operating system and therefore unavailable as EMACS
commands. C-{ is not availuble because its spot in ASCH s pre-empied by Altmode.

Those characters which you can't type directly can be typed as two character sequences using the bit prefix
characters Altmode, C-C and C-~. Altmode turns on the Meta bit of the character that foliows it. Thus, M-A
can be typed as Alimode A, and C-M-A as Alinode C-A. Altmode can be used to get almost all of the

o
“mwwwmmww“
et

it

§
i
é

Yarticular Types of ‘Ferminals

characters that can’t be typed directly. C-C can be used to type any Control-Meta character, including a few 3
that Altmode can’t be used for because the corresponding non-Meta character isn’t on the keyboard. Thus,
while you can’t type C-M-; as Altmode Control-;, since there is no Centrol-; ir ASCI, you can type C-M-; as
C-C .. "The Control (ron-Meta) characters which can’t be typed directly require the use of C-~, as in C-~<to
get the cffect of C-<. Because C-~ by itsclf is hard to type, the EMACS command sct is arrungad so that most
of these non-ASClH Control characters are not very important. Usually they have synonyms which are easier
16 type. In fact, in this manual only the casier-to-type forms are ustally mentioned.

At b dhiid

0

[

In order to type the Help character you must actually type two characters. C-_ and 11, C-_ is an escape

cheracter for FY'S itsclf, and C-_ tollowed by H causes TS to give the Help character as input to EMACS.

On ASCH keyboards. you can type a numeric argument by typing an Altimode followed by the minus sign
and/or digits. Then comes the command for which the argument is intended. For example. type Alimode 5
C-N to move down five lines, If the command is a Meta comimuand, it must have an Altmode of its own, as in
Altmode 5 Altmode | to move forward five words.

Note to customizers: this cffect requires redefining the Meta-digit commands, since the Altmode and the

first digit scunount to a Meta-digit character. The new definition & ~R Autoarg. and the redefinition is done
by the default init file.

If you use numeric arguments very ofien, and cven typing the Altmode is painful, you niight cnjoy using

Autoarg made, in which you can specify a numeric argument by just typing the digits. Scc scction 4
[Arguments}, page 17. for details.

I.4. Upper-case-only Terminals

On terminals lacking the ability to display or cnter lower case characters, a special input and antput

casc-flagging convention has been defined for editing files which contain lower case characters.

The customary escape conveéntion is that o slash_prefizes iany upper case Ietier: all unprefixed letters are

Tower case (sce below for the “lower case punctuation characteny™). ©

Tis convention is chosen hecause lower

case is usuatly more frequent in fifes containing asty lower case atall. Upper casce letters are displayed with a
stash (/") in front. ‘Typing a slash followed by a letter is a good way to inscrt an upper case leticr. Typing a
letter without a slash inserts a lower case letter. For the most part, the buffer will appear as if the slashes had
simply been inserted (type /A and it inserts an upper case A, which displays as /A), but cursor-motion
commands will roveal that the slash and the A arc really just one character. Another way to insert an
upper-case letter is to quoie it with C-Q.

e

4
!

i

Note that this cscape convention applics only to display of the buffer and insertion in the buffer. It docs

i

. 158 EMACS Manual for I'1'S Users

not apply to arguments of commands (it is hardly ever uscful for them, sinc case is ignored in command
names and most commands’ arguments). Case conversion is perfonned when you type commands into the

minibuffer. but not when the commands arc actually executed.

‘The ASCIHI character set includes sevcral punctuation characters whose codes fall in the lower case range
and which cannot be typed cr displayed on terminals that cannot handle lower case letters. 1 aese are the
curly braces ("{" and "}"). the vertical bar ("]”). the tilde ("~"). and the accent grave. ‘Their upper case
cquiralents are. respectively. the square brackets (" and “]*), the backslash ("\"). the carct ("), and the
ansign ("@"). For these punctaaiion chavacters, EMACS uses the oppuosite comvention of that used for letters:
the ordinany ., upper case punctuations display as ind are entered as themsselves, while the lower case forms are
prefixed by slashes. ‘This is because the "lower case™ punctuations are much icss frequently used. So, to

#s0H an auent grave, type "/@".
When the slash escape convention is in cffect, a slash is displayed and entered as two slashes.

“This slash-cscape convention is aot normally in cffect. Yo tur it on, the TECO command "-1$" (minus
one dollar sign, not Alumode!) must be cxecuted. “The casiest way to do this is to use the minibuffer:
Alunode Alunode -1$ Altmode Alimode. To turn off the escape convention (for cditing & file of all vpper
case). the command is 08 (zero dollar siga). or Altmode Alunode 05 Alunode Altmode. I you use such a bad
terminal frequently, you can define yourself an EMACS extension, a command to turn slash-cscape on and
off.

The Tower case editing feature is actually more flecible than described here. Refer to the TECO
commands IS and 1S CASES, using M-X TECDOC, for {full details.

LS. The SLOWLY Package for Slow Terminals

The STOWLY library is intended as an &id for people using display terminals at slow speeds. [t provides
mcans of limiting redisplay to smaller parts of the screen. and for tuming off redisplay for a time while you
cdit.

Touse SLOWLY, do M-X Load Library¢SLOWLY<cr> and if yeur terminal is a display operating at 1200

baud i loss (or ifits speed is unknown) SLOWLY will set ap the commands descrined here,

Comments, bugs. and suggestions o RWKEMIT-MC

e e roots-—m- ™ kgt 2.7

[Tt e e S > e

Yarticalar ‘Fypes of | erminals 159

L.5.1. Brief Description

SL.OWLY provides an alternate version of the incremental scarching comands on C-S and C-R, ~R Lidit
Quiclly on C-X @, a way to shrink the screen at cither the top or the bottom on M-O, and more flexibility in

where minivuffers get displayed. 1f SLOWLY is loaded, it redefines these commands only if the terminal
speed is 1209 baud or less.

15.2. SLOWLY Commands

The commands provided are:

M-O (“R Set Screen Size)

This function. redaces the amoeunt of the screen used for displaying your text, down to a
fow lines at the top or the botiom. I called without an agwment, it will use the same size
as st time (o1 Yifichasn't been called belore), 1f given a positive argument, that is taken
to be the nuniber of lines to use e the top of the screen. If given a negative argument, it is
taken o be the number of lines at the bottom of the screen. 1 given an argument of 0, it
retui s to the use of the entire screen. ‘The section of the sereen that is in use is (Jefaultly)
delimite y a hne of 6 dashes. "This comnand sets the variable Short Display Size.

C-S (*R Slow Display 1-Scarch)

This function is just like the usual incremental search, except if the search would run off
the scteen and cause a redisplay, it narrows the screen to use only a few lins at the top or
bottom of the screen to do the redisplay in. When the scarch is exited. use of the full
screcn resumes. The size of the window used for the scarch is the value of the variable
Slow Scarch Lincs. If it is positivz, it is number of lines at top of screen: il negalive, it is
the number of lines at bottom of screen. The default is {1, "The variable Slow Scarch
Separator contains the string used (o show the end of the scarch window. By default it is
six dashes. Sce section 10 [Search], page 41.

C-R (~R Slow Reverse Dispiay 1-Scarch)
"This searcl.cs in backwards in the style of ~R Slow Display i-Serrch,

C-X Q (*R Iidit Quictly)
This function enters a recursive ediv~, level witly redisplay inhibited. "T'his means that
your commands are carried out but the screen doces not change, C-1. with no argument
redisplays. So you can update the screen when you want o, Two C-1.7s i a row clear the
screen and redisplay. C-1. with an argument repoditions the window, as usual (Sce
section 15 [C-1 .}, page 71.). "To exit and resume continuous redisplay, use C-M-C.

1.5.3. Minibuffers

SLOWLY prosides control over how minibuffers display on your sct2en. The variable Minibuffer Size

specifics how many lines it takes up. If this is made negative, the minibulfer will appear at the bottom of the

Wiy

e LB P

o sny

brate

L e

ST e mpams wIREes BREOS SRS Peeltemnon v canieis

LAY T e bt st

EMACS Manual for I'l'S Users

it M O o

—

screen instead of the top. Thus one mode of operation which some people like is to use *R Set Screen Size to

Ll by i1 i

set up to not use the bottom 3 Tincs of the screen, and set Minibuffer Size to -3. "This will permanently reserve
Jines at the bottom of the screen for the minibuffer. Sce section 23 {Minibuffer], page 127.

I'he variable Minibuffer Separator holds the string used to separate the minibuffer-arca from the rest of
the screen. By default, this is six dashes.

ST.OWLY installs its minibuffer by defining the variable MM & Minibuffer.

1.5.4. SLOWLY Options

‘The simplest way to run SLOWLY s to simply load it, and use the default key assignments, ctc. Here is

what SLOWLY scts up when simply loaded normally, provided your terminal is no faster than 1200 baud.

if vou want SLOWI.Y rot set up these things unless your terminal is running at 300 baud or slower
(ugh!), set the variable SLOW..Y Maximum Speed to the highest speed at which SLOWLY is desired. Put
the following in your EMACS init file:
300 M.VSLOWLY Maximum Speed¢

Ao s 000t 50 e s s et o o 0l o s i s e ot lt 3t B0

It you don't like the command assignments set up by SLOWLY, you can override them by defining the
variable STLOWLY Sctup Hook before loading SLOWLY. ‘The value should be TECO commands to define

the command assignments you wish.

il &

SLOWLY normally uses lines of six dashes to separate arcas of the screen. You can tell it to use something

clse iistead. Minibuffers use the value of Minibuffer Separator, scarches use the value of Slow Search

Separaior. 1t one of these is unspecified (the variable does not exist), the value of Default Separator is used.

I he separator for small screen mode is always the value of Default Separater. 1f the value specified is the null

string, a blank line is used. 1f the value specified is zero, nothing (not even a biank line) is used. This is useful

for scarches, since you aren’t going to be doing anry cditing in the search window.

Even though SLOWLY does not redefine the commands on a fast terminal, you might wish to load it only
on slow (erminals to save address space the rest of the time. "This can be done in an init file with
fsospeed$4-1200:"g m(m.mLoad Library¢)SLOWLY$'

ATy R ORI

b

Usc of EMACS from Printing "I erminals , 161

Appendix II
Use of EMACS from Printing Terminals

While FMACS was designed (0 be used from a display terminal, you can use it effectively from a printing

terminal. You cannot, however, learn EMACS using one.

All EMACS commands have the same cditing effect from a printing terminal as they do from a display.
All that is different is how they try to show what they have done. EMACS attempts to make the same
commands that you would use on a display terminal act like an intetactive line-editor. 1t does not do as good

a job as cditors designed originally for that purpose, but it succeeds well enough 1o keep you informed of

what your commands are accomplishing, provided you know what they are supposed to do and know how

they would look on a display.

2258

=3

‘The usual buffer display convention for EMACS on a printing terminal is that the part of the current line
before the cansor is printed out, with the cursor following (at the right position in the linc). What follows the
cursor on the line is not immediately visible, but normatly you will have a printout of the original contents of
the line a little ways back up the paper. For example, if the current line contains the word "IFOOBAR", and
the cursor is after the "IFO0", just "FOO™ would appear on the paper, with the cursos following it. Typjpg
the C-F conimand to move over the "B” would cause "B” to be printed, s that you would now see "IFOOB”"
with the cuisor following it. All forward-motion commands that move reasonably shost distances print out

what they move over.

Backward motion is handled in a complicated way. As you move back, the terminal backspaces to the
correct place. When you stop moving back and do something cisc, « linefeed is printed fist thing so that the
printing doae to 1eflect subsequent commands does not overwrite the text you moved back over and become
garbled by it. The Rubout command acts like backward motion, but also prints a slash over the character
mbbed oui. Other backwards deletion commands act like backward motion; they du not print slashes (it

would be an improvement if they did).

One command is different on a printing terminal: C-1., which normally means “clear the screen and
redisplay”. With no argument, it retypes the entire current line. An argument tells it to retype the specified

number of Tines around the current line,

et b b i

Unfortumately, EMACS cannot perfectly attain its goal of making the text printed on the current line

reflect the cuerent line in the buffer, and keeping the horizontal position of the cursor correct. One reason is
that it is necessary for complicated commands to ccho, but cchoing them sciews up the "display”. The only

solution is to type a C-I. whenever you have trouble following things in your mind. The need to keep a

EMACS Manual for I'1'S Users
i
mental model of the text being cdited is., of course, the fundamental defect of all printing terminat editors.

Note: it is possible to make a specific command print on a printing terminal in whatever way is desired, if
that is worth while. For example, l.inefeed knows explicitly how to display itself, since the general THCO
redisplay mechanism isn't able to handle it. Suggestions for how individual commands can display .
themselves are welcome, as long as they are algorithmic rather than simply of the form "please do the right

thing".

. "
8 A b

[Ty

Glossary

Glossary

Aborting Aborting a recursive editing level (q.v.) means canceling the conimand which invoked the
recursive cditing. For example, if you abort cditing a message to be sent, the message is
not sent. Aborting is donc with the command C-]. Sce section 24.1 [Aborting], page 129.

Altmode Altmode is a character, labelled Escape on some keyboards. It is the bit prefix character
(g.v.) used to enter Mcta-characters when the keyboard does not have a Meta (g.v.) key.
Sce section 2 [Characters], page9. Also, it dclimits string arguments to cxtended
commands. Sce section S [Ixtended], page 19.

Balance Parentheses
IEMACS can balance parentheses manually or automatically. You can ask to move from)
one parenthests to the matching one. Sce section 20.6.1 {1 ists], page 94. When you insert a i .
close parenthesis, EMACS can show the matching open. See section 20.4 [Matching), :
page 90.

Bit Prefix Character
A bit prefix character is a command which combincs with the next character typed to make {
onc character. They arc used for effectively typing commands which the keyboard being : J
uscd is not able to send. For example, to use a Mceta-character when there is no Mcta key
on the keyboard, the bit prefix character Altmode (q.v.) is needed. Sce scction 2 [Bit o
Prefix], page 9.

Buffer ‘The buffer is the basic cditing unit; one buffer corresponds to one picce of text being
edited. You can have scveral buffers, but at any time you arc cditing only one, the
"sclected” buffer, though two can be visible when you are using two windows. Sce
section 14 |Buffers], page 67.

C C is an abbreviation for Control, in the name of a character. See section 2 {C-], page 9.

C-M- C-M- is an abbreviation for Control-Meta, in the name of a character. Sce scction 2
[C-M-|, page 9.

Command A comimand is a character or sequence of characters which, when typed by the user, fully
specifies one action to be performed by EMACS. For example, "X" and "Control-F" and
"Meta-X ‘ext Mode<er>"” are commands. Sce section 2 [Command]), page 9. Sometimes
the first character of a multi-character command is also considered a command: M-X Text
Modeder> is a command (an cxtended command), and M-X is also a command (a
command to tcad a function name and invoke the function}. Sce scction S [Extended],
page 19.

e s o R S e N

Completion Completion is what EMACS does when it automatically fills out the beginning of an
extended command name into the full name, or as much of it as can be deduced for
certain. Completion occurs when Altmade, Space or Return is typed. See section §
[Completion], page 19.

il ol

Connected A character comma..d in EMACS works by calling a function which it is “connccted” to.
Customizatinn often involves connecting a character to a different function. Sce "Dispatch -
table". Scc section 2 [Connected], page 9.

164 EMACS Manual for I'l'S Uscrs

1 OBk A

gt

Continuation Line

&l

5 When a line of text is longer than the width of the screen, it is displayed on more than one
line of screen. We say that the linc is continued. and that all screen lincs used but the first :
%‘ are called continuation lines. See section 1 [Continuation], page 5.

.

: Control Control is the name of a bit which cach command character does or does not contain, A

character's name includes the word Control if the Conurol bit is part of that character.
Idcally, this means that the character is typed using thic Control key: Control-A is typed by
typing "A" while holding down Control. On most keyboards the Control key works in

only some cases; the rest of the time, a bit prefix character (g.v.) must be used. Sce
section 2 [Control], page 9.

SIS

g

EE

Control-Character
A Control charicter is a character which includes the Control bit.

Control-X Command

A Control-X command is a two-character command whose first character is the prefix
charaster Control-X, Sec section 2 [Control-X Command], page 9.

” P T T RS RO WL I}
e B 0 I I T

& <erd stands for the carriage return character, in contexts where the word "Return” might
be confusing. See section 2 [<crd], page 9.

CRLF CRLF stands for the sequence of two characters, carriage return followed by linefeed, ¢
which is uscd to separate lines in files and text being cdited in EMACS. Sce scction 2 :
[CRLYF], page 9.

Cursor

'The cursor is the object on the screen which indicates the position called "point” (q.v.) at
which inscrtion and deletion takes place. The cursor is part of the terminal, and often
blinks or underlines the character where itis located. See section 3 [Cursor], page 13.

L

]

Customization Customization is making minor chinges in the way EMACS works. [Uis often done by

setting variables (See section 22.3 [Variables], page 114.) or by reconnecting commands
(Sce section 5.2 [Reconnect), page 21.).

ety

DEFUN

T

A DEFUN is a list at the tap level of list structure in a Lisp program. It is so named

because most such lists are calls to the Lisp function DEFUN. See scction 20.6.2],
page 95.

T

‘l“?ﬁ iy
d el

Delete

This is the label used on some terminals for the Rubout character.

St e A b o a4 A

G

Deletion Deletion means crasing text without saving it. EMACS deletes text only when it is

expected not to be worth saving (all whitespace, or only one character). The alternative is
"killing™ (q.v). Sec section 9.1 [Deletion], page 35.

2
=

2
E
z
=
B

Dispatch Table The dispatch table is what records the connections (q.v.) frem command characters to

functions. ‘Think of a telephone switchboard connecting inconung lines (commands) to
welephones (functions). A stmdard FMACS has one set of connections; a customized
EMACS may have different connections. See section 5.2 |Dispaich ‘Table), page 21.

Fcho Arca

E 4
The ccho area is the bottom thiee lines of the screen, used for echoing the arguments (o

commands. for asking questions, and printing briel’ messages. Sce section 1 {licho Areal,
page 3.

W

P AR

AT s
sy

R e i st et =
o= - S - sy

—————————— ve— i g

15

d
|
J
b

JR——

3 e
e

Glossary

Fchoing

Fscape

Exiting

Fchoing is acknowledging tie reccipt of commands by displaying them (in the echo area).
Most programs other than EMACS ccho all their commands. EMACS never echees
single-character commands; longer comnands echo only if you pause while typing them.,

Escape is the label used on some tenminals for the Altmode character.

Exiting EMACS means returaing to EMACS's superior, normally HACTRN. Sce
section 6.3 [Exiting], page 26. Exiting a recurive editing level (g.v.) means allowing the
command which invoked the recusive editing to complete nonnally, For example, if you
are cditing a message to be sent, and you exit, the message is sent.

Extended Command

[<xtension

Filling

Function

Grinding

Help

Home Directory

INFO

IS

Kill Ring

Kitling

An extended command is a command which consists of the character Meta-X followed by
the command name (really, the name of a function (y.v.)). An cextended command
requires several characters of input, but its mame is made up of English words, so it is casy
to remember. Sce scetion 5 [Extended), page 19.

Extension means making changes to EMACS which go beyond the bounds of mere
customization. 1f customization is moving the furniture around in a room, extension is
building new furniture. Sec the file INFO;CONV .

Filling text means moving text from line (o line so that ¥ the lines are approximatelv the
same length. See section 1.4 JI-illing], page 47.

A denction is a named subroutine of EMACS. When you type a conmand, EMACS
executes J function which corresponds o the command. and the function does the work,
Short commands -we connected to fumctions through the dispateh table (g.v.). Lxtended
commands contair the niwe of the functien to be called: this allows you to call any
function. Sce section 5 [Extended), page 19.

Grinding mcans rcformatting a program so that it is indented according to its structure.
Sce section 20.7 {Grinding}, page 96.

You can type the Help character at any timc to ask what options you have, or to ask what
any command docs. Sce scction 7 [Help}, page 29.

Your home directory is the one on which your mail and your init files are stored.

INFO is the subsystem for perusing (ree-structured documentation fiies. ‘The
documentation in INFFO includes a version of the EMACS imanual.

I'T'S is the Incompatibie Timesharing System written at the MIT Artific Y Intelligence Lab.,
EMACS was first developed on this system. Just what it is incompatible with has changed
from ycar to year,)

The kill ring is where killed text is saved. It holds the Lsst nine or so blocks of killed text.
1t is catled a ring because you can bring any of the saved blacks (o the front by rotating the
ring. Sce scction 9.1 [Kill ring], page 35.

Killing mcans crasing text and saving it inside EMACS 1o be recovered tater if desired.
Most EMACS commands to crase text do killing, as opposed to deletion {q.v.). Sce
scetion 9.1 [Killing), page 35.

ol Bon i1 v o

T e A et e e Mt o

1}':

g

Il

EMACS Manual for IS Users :

A list is, approximately, a text string beginning with an open parenthesis and ending with
the matching close parenthesis. See section 20.6.1 [Lists}, page 94. Actually there are a few
complications to the syntax, which is controlled by the syntax tble (Sce scction 22.4
[Syntax), page 115.).

M- M- in the name of a character is an abbreviation for Meta.

i b LA 14 S VI

M-X M-X is the charazter which begins an exiended command (g.v.). Extended commands
have come to be known also as "M-X commands”, and an individual extended command
is often referred to as "M-X such-and such™. Sce scction 5 [M-X], page 19.

B

| o1

Major Mode The major modes are a mutually exclusive sct of options which configure EMACS for
cditing a certain sort of text. Ideally, cach programming language has its own major mode.
See section 20 {Major Mode], page 87.

A ML B 5 D 4 4

Mark ‘The mark points, invisibly, to a position in the text. Many commands operate on the text
between pointand the mark (known as “the region”, q.v.). Sec section 8 [Mark], page 31.

it 5o

AN, 0

Meta Meta refers to the Meta key. A character’s name includes the word Meta if the Meta key
must be held down in order to type the character. if there is no Meta key, then the
Altmode character is uscd as a prefix instead. See section 2 [Meta), page 9.

Meta Character A Meta chaiacter is one whose character code includes the Meta bit. ‘These characters can
be typed only by means of a Meta key or by means of the Metizer command (q.v.).

Metizer ‘The meiizer is another term for the bit prefix character for the Mcta bit; namely, Altmode
(q.v.).

Minibuffer The minibuffer is a fuacility for cditing and (hen exceuting a ‘1'CO program. Sce
scction 23 [Minibuffer], page 127.

Minor modce A minor mode is an oplional feature of EMACS which can be switched on or off
independenty of all other features. Fach miaor maode is both the name of an option (q.v.)
and the name of an extended command to sct the optien. See section 22.1 [Minor Mode],
page 111.

MM-command This is an obsolete synonym for "extended command”,

Modc line ‘The made fine is a line just above the echo area (q.v.), used for status information. See
scction 1.1 [Mode Line}, page 6.

Narrowing Narrowing mcans limiting cditing to only a part of the text in the buffer. ‘T'ext outside that
part is inaccessible to the user until the boundaries are widened again, but it is still there,
and saving the file savesitall. See section 17 {Nurrowing], page 77.

Ntumeric Argument
A numieric argument is a number specified before a command to change the effect of the
command. Often the nurieric agument serves as i repeat count. See section 4 [Numeric
Argument], page 17. —

Option An option is a vaniable which exists to he set by the user to change the behavior of EMACS
commands. This is an wsportant method of customizztion. Sce section 22.3 [Options),
page 114,

R T—————.

Glossary

Parse

Point

Prefix Character

Frompt

Q-Registers

Quitting

Quoting

Redisplay

Region

Return

Rubout

5 cxpression

167

We say that EMACS parses words or expressions in the text being cdited. Really, all it
knows how to do is find the other end of a word or expression. ©2¢ section 22.4 [Syntax],
page 115.

Poir:t is the place in the buffer at which insertion and deletion occur. Point is considered to
be between to characters, not at onc character. The terminal’s cursor (q.v.) indicates the
location of point. Sce section 3 [Point], page 13.

A prefix character is a command whose sole function is to introduce a set of
multi-character commands. Control-X (q.v.)is a prefix character. ‘The bit prefix
characters (g.v.) arc other examples,

A prompt is text printed in the ccho arca to ask the user for input. Printing a prompt is
called "prompting”. EMACS can prompt when a command requires an argument, or
when only part of a command has been typed. Howeser, the prompt will not appear
unless you pause in your typing. Sce section 5 [Prompt], page 19.

Q-registers arc internal ‘TECO variables which can be used by EFMACS or by the user o
store text or numbers,

Quitting means interrupting a command which is partially typed in or already cxccuting, 1t
is done with Control-G. Sce section 24.1 [Quitting], page 129.

Quoting means depriving a character of its usual special significarice. It is usually done
with Control-Q. What constitutes special significance depends on the context and on
convention. FFor example, an "ordinary” character as an EMACS command inserts itse]f
s0 you can insert any other character, such as Rubout, by quoting it as in Control-Q
Rubout. Not all contexts allow quoting.

Recursive Editing Level

A recursive cditing level is a state in which part of the exccution of a command involves
asking the user to edit some text. “This text may or may not be the same as the text to which
the command was applicd. ‘1 he mode line indicates recursive cditing fevels with square
brackets ("[" and "]"). Sec scction 6.2 [Recursive Editing Level], page 26.

Redispliy is the process of correcting the image on the screen to correspond to changes
that have been made in the text being edited. Sce scction 1 [Redisplay], page S.

The region is the text between point (g.v.) and the mark (q.v.). ‘The terminal’s cursor
indicates the location of point, but the mark is invisible. Many commands opcrate on the
text of the region. Sce section 8 [Region), page 31.

Return is the carriage return character, used as input to EMACS. Return is used as a
comnmand in itself to insert a line separator. It also terminates arguments for most
commands. Sce section 2 [Return], page 9. ’

Rubout is 2 character, sometimes labeiled "Delete”. It is used as a command to delete one
character of text. It also deletes one character when an EMACS conunand is reading an
argument.

An s-cxpression is the basic syatactic unit of Lisp: cither a list, or a symbol containing no
parcntheses (actually, there arc a few exceptions to the rule, based on the syntax of Lisp).
Sce scction 20.6.1 [S-expressions}, page 94.

D W b L

i |

i

LRt U A

L i B

wo sthmnd

Sclecting

EMACS Manual for 11'S Users

Selecting a bufter {y.v.) means making cditing commands apply to that buffer as opposed

to any other. At ail times onre buffer is seleted and cditing takes place in that buffer. Sce
section 14 [Sclect]. page 67.

Scif-documentation

String Argument

Subsystern

Syntax Table

Tailoring

Self-documentation is the feature of EMACS which can tell you what any command docs,
or give you a list of all co..mands related to a topic you specify. You ask for
sclf-documentation with the Help character. See section 7 [Sclf-documentation], page 29.

A string argument is an argument which follows the command name in an cxtended
command. In "M-X Apropostword<cr>", "Word" is a string argument to the Apropos
command. Sce section 5 [String Arguments], page 19.

A subsystem of EMACS is an EMACS command which. itsclf. reads commands and
displays the results. Examples are INFO, which is for perusing documentation; DIRED,
which is for cditing directories; RMAILL and BABYIL.. which arc for reading and cditing
mail. The word "subsystem”™ implies that it offers many indcpendent commands which

can be used freely. If an EMACS function asks specific guestions, we do not call it a
subsystem,

Usually the subsystem continues in operation untit a specific command to exit (usually
“Q") is typed. ‘The commands for a subsystem do not usually resembse ordinary EMACS
commands. since editing text is not their purpose. The Help character should clicit the
subsystem’s documentation. See scction 6.1 [Subsystems), page 25.

The syntax table tells EMACS which characiers are part of a word, which characters
balance cach other like parentheses, cte. See section 22.4 {Syntax], page 115.

This is a synorym for customization (q.v.).

TECO Search Stying

THp Level

‘Twenex

Typcout

A TECO scarch string is a sort of patiern uscd by the Ti2CO scarch command, and also by

various EMACS commands which use the TECO scarch command. Sce scction 9.3
[TIECO scaich string), page 85.

Top level is th:e normal state of EMACS, in which you are editing the text of the file you

have visited. You arc at top level whenever you arc not in a recursive cediting level or a
subsystem (q.v.).

‘T'wenex is the operating system which DEC likes to call "TOPS-20". However, a person
should not be forced (o call a system "tops™ uniess he really thinks so. Come now, DEC,
don’t you think people will praise your products voluntarily? The name "T'wenex” is also
more appropriate because T'wenex was developed from the “Tenex systemy, and has no
relationship to "TOPS-10". What's mor¢, it’s very cuphonious.

Typcout is a message. printcd - an EMACS command. which overwiites the area
normally used for displaying the iext being cdited, but which does not become part of the

text. Typeout is used for messages which might be too long to fit in the echo arca (q.v.).
See section 1 {Typeout], page 5.

Undo is a command which undocs the cffect on the buffer of a previous command. Only

some commands are undoable and only the most recent undoable command can be
undone. Scc section 24.3 {Undu), page 132.

3
E
z
i
H
3
H
E]
3
Z
2
El
H
E
E
Z

|
T BT o o AP Dt fu e

Glossary

Un-killing Un-killing means reinscrting text previously killed. 1t can be used to undo a mistaken kill,
or for cepying or moving text. Sce section 9.2 [Un-killing). page 37.

User Name Your user name is the name you usc te log in. 1t identifies you as opposed to all the other
users. It may be the same as your hiome directory's name.

IR T IO T

Variable A variable is a name with which EMACS associates a value, which can be a number or a
string. Sce scction 22.3 [Variables), page 114. Some variables ("options™) are intended to
be used or set by the user; others are for purcly internal purposcs.

W

T 1 S R R

Virtual Boundarics

"The virtual boundarics delimit the accessible part of the buffer, when nar.owmg (y.v.)isin
effect. See section 17 {Virtual Boundarics), page 77.

: Visiting Visiting a filc means loading its contents into a buffer (g.v.) where they can be cdited. See
: section 13.1 [Visiting], page 55.

Wall Chant “I'he wall chart is a very brief EMACS reference sheet giving one line of information about
cach short comutand. A copy of the wall chart appears in this manual Whitespace
Whitespace is any run of consecutive formatting characters (space, tab, carriage return,
lincfeed, and backspace).

PP 0 i D SR M AL €114 400 0

|
Widening Widening, is the operation which undocs narrowing (g.v.). Sce section 17 [Widening],
page77.
Window A window is a region of the screen in which text being cdited is displayed. EMACS can

support two windows. Sce section 16 [Windows}], page 73. “The window" also meaus the
position in the buffer which is at the top of the screen. Sce section 15 [The Window],
page 71.

14 ot e A, W v o o) e it

Working Dircctory
"T'his is the directory which you have told the system you wish to operate on primarily at the
moment. Often this will be the same as your home directory (g.v.). Itis specified with the
DDT command :CWD <dircctory).

il ol i bl

“R ‘The string "~R" is the beginning of many function sames. Sece section 5.2 {*R}, page 21.

~R mode ~R made is the real time editing mode of TECO. EMACS always operates in this inode.

AR iddaded {0

o

T T VR 8 IRV ST T A

S s

i
i

rs

MACS Manual for I'1'S Use

E

170

L L T T

e

il

AL

Command Index 171

Command Index

W s o bl w1 N

Yhis index contains bricf descriptions with cross references for all commands, grouped by topic. Within
cach topic, they are in alphabctical order. Qur version of alphabetical order places non-control non-meta

characters first, then control characters, then meta characters, then control-meta characters. Control-X coines
las.

ity A i et W

Prefix Characters

o R

Altmode (“R Prefix Meta)

Altmode is a bit prefix character which turns on the Meta bit in the next character. Thus,

Altmode I is cquivalent to the single character Meta-F. ahich is useful if your keyboard
has no Meta key. Scc section 2 [Altmaode], page 9.

] oo

Control~ (~R Prefix Control)

Control-~ is a bit prefix character which terns on the Control bit in the following character.

Thus, Control-~ < is equivalent to the single character Control=<. See section 2 [Contrel-~],
page 9.

VL St O

Control-C {~R Prefix Control-Meta)

Control-C is a bit prefix character which urns on the Conrrol bit and the Mcta bit in the

following characier. Thus, Contral-C ; is equivalent to the single charcter Contrul-Meta-;
. See section 2 [Control-CJ, page 9.

Control-Q (~R Quoted Insert)

Contrei-Q inserts the following character. 'This is a way of inserting control characters.
See section 3 {Control-Ql. page 13,

Control-U (“R Universal Argument)

Control-U is a prefix for numeric arguments which works the same on all icniinals, See
section 4 [Control-U], page 17.

ARSI

EF

Control-X

R

Control-X is a prefix character which begins a two-character command. Each combination
of Control-X and another character is 2 "Control-X command”. Individual Control-X

commands appear in this index according to their uses. %

=

Mcta-X (R Externded Command) %
Meta-X is a prefix character which introduces an extended command name. Sce section 5 r

[Meta-X]. page 19. =

)

i

Control-Mcta-X (*R Instant Extended Command)

Caontrol-Mcta-X is anviher way of invoking an extended cemmand. Indead of putting the

arguinchts in the same line as the command name, thie command reads the arguments
itself. Sce section 5 [Control-Mcta-X], page 19.

Control-digits, Meta-digits, Control-Mcta-digits

172 EMACS Manual for FI'S Users

These all speciiy a numeric argument fo: the next command. See section 4 [Arguments],
page 17.

Controi-Minus, Meta-Minus, Control-Meta-Minus

These all hegin a negative numiéric argument for the next command. Sce section 4
[Arguments], page 17.

s s .l i

Simple Cursor Motion

Control-A (°R Beginning of Line, built-in fiunction)
Control-A moves to the beginning of the linc. See section 3 [Control-A), page 13.

3 b s s it ol

Control-8 (~R Backward Character, built-is function)
Control-B moves backward one character. See section 3 [Control-B), page 13.

o e, e ey

Control-E (~R Iind of Line, built-in function)
Control-E moves (o the end of the Tine. Sce section 3 [Control-l], page 13.

Control-FF (~K Forward Charucter. built-in function)
Control-I- moves forward one character. Sce section 3 [Control ¥}, page 13.

Control-H (R Backward Character, built-in function) c
Control-H moves backward anc character. Sce section 3 [Control-H], page 13.

Control-N (“R Down Real Line)
Contral-N moves verticaliy straight dewn. Sce section 3 [Controi-N], page 13.

Control-P (*R Up Real Line)
Control-P moves vertically straight up. Scc sectivn 3 [Control-P), page 13.

Controi-R (~R Reverse Scarch)
Control-R is like Control-8 but scarches backward. See scction 10 [Control-R], page 41.

Control-S (*R Incremental Scarch)

Control-S scarches for a string. terminated by Altmode. ¥t scarches as you type. Sce
section 10 {Control-S], page 41.

,); G, ;‘a T ;’ ‘
gl

o

Mcta-< (~R Goto Beginning)
Meta-< mioves to the beginning of the buffer. Sce section 3 [Meta-<], page 13.

Mcta-> {~R Goto ind)
Meta-> moves to the end of the huffer. Sce section 3 [Meta->), page 13.

Cuntrol-X Control-N {*R Sct Goal Column)

Control-X Contral-N scts a horizontal goal for the Control-N and Control-P commands.

When there is a goal, those commands try to move o the goal columa instead of straight
1ip or down.

‘ ﬁ by \‘

“ I AT § buthorns o <
s
i

Ly e e pa Lo AT

Command index

Lines

Return (*R CRLF)
Return inserts a line separator, or advances onto a following blank linc. See scction 3
[Return), page 13.

Control-O (*R Open Line, built-in function)
Control-O inserts a line separator, but point stays before it. Sece section 3 [Control-O},
page 13.

Control-X Control-O (*R Delete Blank Lines)

Control-X Control-O deletes all but one of the blank lines around puint. If the current line
is not blank, all blank lines following it are delcted. See section 3 [Control-X Control-OJ,

page 13.
Control-X Control-T (*R T'rapspose Lines)

Control-X Control-T" transposes the contents of two lines. Sce section 12 [Control-X
Control-T], nage 53. ‘

Killing and Un-killing

Rubout (*R Backward Delete Character, built-in function)
Rubout deletes the previous character. Sce section 3 [Rubout], ppage 13,

Control-Rubout (R Backward Delete Hacking Tabs, built-in function)

Control-Rubout deletes the previous character, but copverty a tab character into several
spaces. Sce section 20.6 [Control-Rubout], page 93.

Control-1) (*R Deicte Character, built-in function)
Control-1) deletes the next character. See section 3 [Control-D}, page 13.
Coatrol-K (“R Kill Line) -
Control-K kills to the end of the line, or, at the end of a line, kills the line scparator. Sce
section 9.1 [Conwrol-K], page 35.
Control-W (~R Kill Region)
Control-W kills the region, the text betwen point and the mark. Sce scction 9.1
[Control-W], page 35. Sce scction 8 [Region], page 31.
Control-Y ¢ R Un-kill) .
Control-Y reinserts the last saved block of killed text. See section 9.2 [Control-Y), page 37.
Meta-W (R Copy Region)
Meta-W saves the region as if it were killed without removing it from the buffer. Sep
scution 9.2 [Meta-W], page 37.
Meta-Y (*R Un-kill Pop)

Metz-Y rolls the kill ring to reinsert saved killed text older than the most recent kill. Sce
section 9.2 [Meta-Y}, page 37.

M bt

b
E
3

Vb Wl o et il

Ll e s A b i 0 o St

5

174

Control-Mecta-W (~R Append Next Kill)
Control-Meta-W causcs an immediately Jollowing kili command to append its text to the
last saved block of killed text. See section 9.2 [Control-Meta-W), page 37.

Concol-X'I (“R Transpose Regions)

Control-X I transposcs two arbitrary regions defined by point and the last three marks.
Sce section 12 [Control-X T, page 53.

Scrolling and Display Control

Contro-l. R New Window)
Control-1. cicars the screen and centers poini in it. With an argument, it can put point on a
specific line of the sereen. See section 15 [Control-L], page 71.
Control-V (*R Next Screen)
Control-V scrolls downward by a screenful or several lines. Sce section 15 {Control-V],
page 71.
Meceta-R (*R Move to Screen Edge)
Meta-R moves point to beginning of the text on a specificd line of the scrcen. Sce
section 15 [Meta-R], page 71.
Mcta-V (°R Previous Screen)
Meta-V scrolls upward by a screenful or several lines. Sce section 15 [Meta-Vi, page 71,
Control-Meta-R - (*R Reposition Window)
Control-Meta-R trics to center on the screci. ine function or paragraph you are fooking at.
See section 15 [Control-Meta-R}, page 71.
Control-Meta-V (*R Scroll Other Window)

Control-Meta-V scrolls the other window up or down, when you arc in two window mode.
See section 16 |Control-Meta-V), page 73.

The Mark and the Region

Control-< ("R Mark Beginning)

nl’l rovl.

ontrel-< seis the mark at the beginning of the buffer. Sce section 8 [Control-<], page 31.
Control-> (*R Murk 1ind)

Centrol-> sets the mark at the end of the buffer. Sece section § [Control->), page 31.
Control-@ (~R Set/Pop Mark)

Control-@ sets the mark or moves to the location of the mark. Sce section 8 [Control-@),
page 31..

Mecta-@ (“R Murk Word)
Mecta-@ puts the mark at the end of the next word. See section 11.1 [Mcta-@), page 43.

Meta-1l (R Mark Paragraph)

e — L o e a e

EMACS Manual foy IS Users

Y

all
il
s e e eerrin s s
B BRI L.

RN

it o R Bt o b b

L oW

L L

g AT

=
=
=
=
w
3
S

i

Z
»

(i

Py

et e 11kt

. T

= - ey = — W
- T L e e B aen i RO e R S R T e SR S S S R “’:L—i—z*; L e e <

Command Index 175

Meta-H puts point at the beginning of the paragraph and the mark at the end. See
section 11.2 [Mcta-H}, page 44.

Control-Mcta-@ (~R Mark Sexp)
Control-Mecta-@ puts the mark at the end of the next s-expression. Sce section 20.6.1
[Control-Mcta-@], page 94.

Control-Meta-4 (*R Mark DEFUN)
Control-Mcta-H puts point at the beginning of the current DEFUN and the mark at the
end. See section 20.6.2 [Control-Mcta-H], page 95.

Control-X H (*R Mark Whole Buffer)
Control-X H puts point at the beginning of the buffer and the mark at the end. See
section 8 [Control-X], page 31.

Control-X Control-P - (R Mark Page)
Control-X Control-P puts point at the beginning of the current page and the mark at the
end. Sce section 18 [Control-X Control-P}, page 79.

Control-X Control-X (*R Exchange Point and Mark)

Control-X Control-X sets point where the mark was and the mark where point was. Sce
section 8 [Control-X Control-X], page 31.

Whitespace and Indentation

Tab (~R Indent According to Mode)

Tab cither adjusts the indentation of the current line or inserts some indentation, in a way

that depends on the major mode. Sce section 11.3 [Indentating Text], page46. See
section 20.3 [Indentating Programs}, page 89.

*

Linefeced (*R Indent New Line)

Lincfeed is equivalent to Return followed by ‘Tab. It moves to a new linc and indents that
linc. If done in the middle of a line, it breaks the line and indents the new second line. See

section 11.3 [Lincfeed], page 46.

Mecta-Tab (~R Tab to Tab Stop)
Meta-Tab indents o the next EMACS-defined tab stop. Sce section 11.3 [Meta-Tab),
page 46.

Mcta-M (~R Back to Indentation)
Meta-M pe sitions the cursor on he cusrent iine afier any indentation. Sce section 11.3
[Mcta-M], page 46.

Mecta-\ (R Delete Herizontal Space)
Meta-\ dclctes all spaces and tab characters around point. Sce scction 11.3 [Mcta-\},
pagc 46.

Mecta-~ (*R Delete Indestation)

Meta-~ joins two lincs, replacing the indentation of the second line with zero or one space,
accerding to the context. See section 11.3 [Meta-~], page 46.

Listtinias ot vt o ool a0 Gl

e nt b LWL Bl s B

176 EMACS Manual for I1'S Users
Control-Mcta-O (*R Split Line) o
Control-Meta-O bicaks a line, preserving the horizontal position of the second half by :

indenting it to its old starting position. See section 11.3 [Control-Meta-O), page 46.
Control-Meta-\ (*R Indent Region)

Control-Meta-\ indents cach line in the region, cither by applying Tab to cach line, or by

giving cach the same specificd amount of indeniation. See section 11.3 [Control-Meta-\],
page 46.

Control-X Tab (R Indent Rigidly)

Control-X 'Tab shifts all the lincs in the region right or left the same number of columns.
See section 11.3 [Control-X 'Tab], page 46.

i ! doh i gl i
A s U s s ol i nd O i

Words, Sentences and Paragraphs

Control-X Rubout (~R Backward Kill Sentence)

Control-X Rubout kills back to the beginning of the sentence. See section 11.2 [Control-X
Rubout}, page 44.

Mcta-A (~R Backward Sentence)
Meta-A moves to the beginning of the sentence. Sce section 11.2 [Mecta-A}, page 44.
Mcta-B (*R Backward Word)
Meta-B moves backward one word. See section 11.1 [Meta-B}, page 43.
Mcta-D (“R Kill Word)
Mecta-1) kills one word forward. Sec scction 11.1 [Meta-D], page 43.
Mcta-F (~R FForward Sentence)
Mecta-E moves to the end of the sentence. Sce section 11.2 [Mceta-E], page 4.
Mcta-F- (~R IForward Word)
Mecta-}* meves forward one word. Sce section 11.1 [Meta-1], page 43.
Meta-Il (R Mark Paragraph)

Mecta-H puts point at the front of the current paragraph and the mark at the end. Sce
section 11.2 {Mcta-11], page 44.

Mecta-K (R Kill Sentence)
Meta-K kills to the end of the sentence. Sec section 11.2 [Mcta-K], page 44.
Mcta-T" (*R Transpose Words)

Meta-T transposes two consceutive words. Sce section 11.1 [Meta-17], page 43.
Meta-[("R Backward Paragraph}

Meta-{ moves to the beginning of the paragraph. Sce section 11.2 [Meta-[], page 44.
Meta] (R Forward Paragraph)

Meta-] moves to the end of the paragraph. Sce scction 11.2 [Meta-]], page 4.
Meta-Rubout (*R Backward Kill Word)

) 5
o of AL 5

Command Index 177

Meta-Rubout kills the previous word. Secc section 11.1 [Mcta-Rubout], page 43.

Filling Text

Meta-G (R Fill Region)
Meta-G fills the region, treating it (usually) as one paragraph. See scction 11.4 [Meta-GJ,

page 47.

Meta-Q (~R Fill Paragraph)
Meta-Q fills the current or next paragraph. See section 11.4 [Meta-Q}, page 47.

b b e 290 8 Bl Pl ol 5 i b 300 o 1 i sl | sl s

Mecta-S (*R Center Line)
Meta-S centers the current line. See section 11.4 [Mcta-S), page 47.

Control-X : (*R Sct Fill Prefix)
Control-X : specifies the fill prefix, which is used for filling imndented text. See section 11.4

[Control-X Colon}, page 47.

Control-X I+ (R Set Iill Column)
Control-X I sets the variable Fill Column which controls the margin for filling and

centering. Sce section 11.4 [Control-X F], page 47.

ixiting

Control-] (Abort Recursive Edit)
Control-] aborts a recursive editing Ievel; that is to say, exits it without allowing the

command which invoked it to finish. Sce section 24.1 [Control-]]. page 129.

YA o o R A M A P s i

Control-Meta-C (~R Exit, built-in function)
Control-Meta-C exits from a recursive cditing level and allows the command which

invoked the recursive cditing level to finish. At top level, it cxits from EMACS to its
superior job. Sce section 6.3 [Control-Meta-C], page 26.

Control-X Control-C (*R Return to Superior)
Control-X Control-C returns from EMACS to its superior job, even if EMACS is currently
inside a recursive editing level. In that case, re-entering EMACS will find it still within the
recursive editing level. Sce section 6.3 [Control-X Control-C}, page 26.

O A,

Pages 2
3

Control-X 1. (*R Count 1.incs Page) =
Contrel-X 1. prints the number of lines on the current page, and how many come before §

point and how many come after. Scc section 18 [Control-X 1], page 79. E:;;

Control-X P {*R Set Bounds Page) :§
Control-X P narrows the virtual boundarics to the current page. Sce scction 17 {Control-X %

P}, page 77. §

=

"

178 EMACS Manual for I'I'S Users

Control-X [(*R Previous Page)
Centrol-X [moves backward to the previous page boundary. See scction 18 [Control-X [].

page 79.

Control-X] (*R MNext Page)
Control-X] moves forward to the next page boundary. Sce section 18 [Control-X],

page 79.

Control-X Control-P (R Mark Page)
Coatrol-X Control-P puts point at the beginning and the mark at the end of the current
page. Sce scction 18 {Control-X Control-P], page 79.

Lisp

Meta-([*R Make ()]
Meta-(places a pair of paientheses around the next several s-expressions. See

section 20.6.1 {Meta-(], page 94.

Mecta-) [*R Move Over))
Meta-) moves past the next close parenthesis and adjusts the indentation of the following

line. Sce scction 20.6.1 {Meta-)), page 94.

Control-Meta-Tab (~R Indent for i.isp)
Control-Mcta-'Tab adjusts the indentation of the current line for proper Lisp style. Sce

section 20.3 |Control-Meta-Tab), page 89.

Control-Meta-{ (R Backward Up L.ist)
Control-Mecta-(moves backward up one level of list structure. Sce scction 20.6.1

[Contioi-Meta-(], page 94.

Control-Meta-) (*R Up List)
Control-Meta-) moves forward up one level of list structure. See section 20.6.1

[Contiol-Meta-)}, page 94.

Control-Mcta-@ (~R Mark Sexp)
Control-Mcta-@ puts the mark at the end of the next s-cxpression. Sec section 8

[Control-Mecta-@}, page 31. :

Control-Meta-A (*R Beginning of DEFUN)
Control-Mcta-A moves to the beginning of the current DEFUN. Sce scction 20.6.2
[Control-Mcta-A), page 95.

Control-Mcta-B (*R Backward Scxp)
Control-Mcta-B moves backward over one s-cxpression. See scction 20.6.1

[Control-Meta-B). page 94.

Controb-Meta-) - (*R Down List)
Control-Mcta-I) moves forward and down a level in list structure. Sce section 20.6.1
[Control-Meta-1)), page: 94.

Controi-Meta-E (*R End of DEFUN)

ot 2 Al

20 Bk, b i L o

=

|

I

Leshnd bl R

o
i3

Sl i e

il

Y

i

gt

=

)

o R

Command Index

Control-Mcta-E moves to the cnd of the current DEFUN. See scction 20.6.2
[Control-Meta-t), page 95.

Control-Mcta-IF (*R Forward Sexp)

Control-Mcta-F moves forward over one s-cxpression. See scction 20.6.1
[Control-Meta-F], page 94.

Comtrol-Meta-G (*R Format Code)
Control-Meta-G grinds the s-expression after point. Sce scction 20.7 [Control-Mcta-G),

s na

page 96. .
i
Control-Meta-H (*R Mark DEFUN) e
Control-Meta-H puts point before and the mark after the current or next DEFUN. Sce
section 20.6.2 [Control-Meta-H], page 95. L
Control-Meta-K (R Kil Sexp) : i
Control-Meta-K kills the following s-expression. Sce section 20.6.1 [Cuntrol-Meta-K], 3
page 94. S
Control-Mecta-N (*R Next List)
Control-Mcta-N moves forward over one list, ignoring atoms before the first open
parenthesis. Sce section 20.6.1 [Control-Mcta-N], page 94.
Control-Meta-P - (“R Previous List)
Control-Mcta-P moves backward over one list, ignoring atoms rciached before the first
close parenthesis. Sce section 20.6.1 [Control-Mcta-P], page 94.
Control-Mcta-G (*R Indent Sexp)
Control-Meta-Q adjusts the indentation of cack of the lines in the following s-cxpression,
but nut the current line. Sce section 20.3 [Control-Mcta-Q], page 89.

Control-Meta-1" (~R Transpose Sexps)
Control-Meta-T transposes two consecutive s-expressions. Sce section 20.6.1
[Control-Meta-T]. page 94.

Control-Meta-U (~R Backward Up List)
Controi-Meta-U moves backward up one level of list structure. See section 20.6.1
[Control-Meta-U], page 94. :

Files

Mcta-. (*R Find Tag)
Meta-. moves to the definition of a specific function, switching files if necessary. Sec 5

scction 21 [Mcta-.}, page 101.

Meta-~ (R Buffer Not Modificd) g
Mecta-~ clears the flag which says that the buffer contains changes that have not been %

saved. Sce section 13.1 [Meta-~], page 55. %

Control-X Control-F (Find File) 2
Control-X Control-F visits a file in its own buffer. Sce scction 14 [Control-X Control-F], E

i%‘

———

180 EMACS Manual for I'l§ Uscrs

page 67.

Control-X Control-Q (*R Do Not Write File)
Control-X Control-Q tells EMACS not to offer to save this file. See section 13 [Control-X
Control-Q), page 55.

Control-X Control-R (*R Read File) _
Control-X Control-R visits a file and tells EMACS not 1o offer to save it. See section 13.1
[Control-X Control-R], page 55.

Control-X Control-S (*R Save File)
Control-X Control-S saves the visited file. See section 13.1 [Control-X Control-S], page 55.

Control-X Control-V (*R Visit File)
Control-X Control-V visits a file. Sce section 13.1 {Controi-X Control-V], page 55.

Control-X Control-W (Write File)
Control-X Control-W saves the file, asking for names to save it under. See section 13.7
[Control-X Control-W], page 63.

File Directories

Control-X D (*R DIRED)
Control-X D invokes the directory cditor DIRED, useful for deleting many files. Sce
section 13.6 [Control-X D), page 60,

Control-X Control-I) (*R Dircctory Display)
Control-X Control-1) displays a subsct of a directory. See section 13.1 [Control-X
Control-D)], page 55.

Buffers

Control-X A (*R Append to Buffer)
Control-X A adds the text of region into another buffer. Sec section 9.3 [Control-X A),
page 38.

Control-X B (Sclect Buffer)
Control-X Bis the command for swiiching to another buffer. See section 14 [Control-X B},
page 67.

Control-X K (Kill Buffer)
Control-X K kills a buffer. Sce section 14 [Control-X K], page 67.

Command Index

Comments

Meta-Lincfeed (R Indent New Comment Line)

Meta-Lincfeed moves to a new line and indents it. If point had been within a comment on
the old line, a new comment is started on the new line and indented under the old one.
Sce section 20.5 [Mcta-Lincfeed], page 91.

Meta-: (“R Indent for Comment)

Mecta-; inscrts a properly indented comment at the end of the current line, or adjusts the
indentation of an existing comment. Sce scction 20.5 [Meta-;], page 91.

Meta-N (R Down Comment Line)
Mcta-N mcves down a line and starts a comment, dcleting cmpty comn:onts. Sec
section 20.5 {Mcta-NJ, page 91.

Meta-P (R Up Comment Linc)

Meta-P moves down a linc and starts a comment, deleting empty comments. Sce
section 20.5 [Mcta-P}, page 91.

Control-Meta-; (R Kill Comment)

Control-Meta-; kills any comment on the cusrent line. Sce section 20.5 [Control-Meta-:),
page 9i. .

Control-X ;. (*R Set Comment Column)

Control-X : sets the column at which comments are indented. from an argument, the
current column, or the previous comment. See section 20.5 {Control-X], page 91.

ko B o e s

Case Conversion

i bt SR st B bl

Meta-C (~R Uppercase Initial)
Meta-C makes the next word Tower case with a capital initial. 1t moves over the word. See
section 11.5 [Mcta-C}, page 49.

Mcta-I. ("R Lowercase Word)
Meta-I. moves over a word converting it to lower case. Sce scction 11.5 [Mcta-L], page 49.

Meta-U (~R Uppercase Word)
Meta-U moves over a word converting it to upper case. Sce section 11.5 [Meta-U], page 49.

AL O S b i

Control-X Control-l. (*R Lowercase Region)

Control-X Control-l. converts the text of the region to lower case. Sece scction 11.5
[Control-X Control-1.], page 49.

A ol

i

Control-X Control-U (*R Uppercase Region)

Contral-X Controt-U converts the text of the region to upper case. See scction 11.5
[Control-X Control-U], page 49.

E
==
,;EE
Z
=

A R A

182 EMACS Manual tor I'1'S Users

Windows

Contiol-Meta-V (~R Scroll Other Window)
Control-Meta-V scrolls the other window up or down. Sce section 15 [Control-Meta-V],
page 71.

Control-X 1 (R One Window)
Control-X 1 stops displaying two windows. Sce section 16 {Control-X 1], page 73.

Control-X 2 (*R Two Windows)
Control-X 2 displays two windows. See section 16 {Control-X 2}, page 73.

Control-X 3 (R View Two Windows)
Control-X 3 displays two windows but stays in the first one. Sce section 16 [Control-X 3],
page 73.

Control-X 4 (*R Visit in Other Window)
Control-X 4 displays two windows and sclects a buffer or vigits a file in the other window.
Sce section 16 [Control-X 4], page 73.

Control-X O (*R Other Window)
Control-X O switches from one window to the cther. See section 16 [Control-X O}

page 73.

Control-X ~ (R Grow Window)
Cont JI-X ~ changes the allocation of screen space to the two windows. S2¢ scction 16
[Control-X ~], page 73.

Narrowing

Control-X N (*R Sct Bounds Region)
Control-X N narrows the virtual boundarics to the region as it was before the command.
Sce section 17 [Control-X N}, page 77.

Contr¢l-X P (*R Set Bounds Page)
Control-X P narrows the virtual boundaries to the current page. Sce section 18 [Control-X
P], page 79.

Conttol-X W (~R Sct Bounds Full)
Control-X W widens the virtual boundarics back to the entire buffer. Sce section 17
[Control-X W, page 77.

Status Information

Control-X = {What Cursor Position)
Control-X = prints information on the screen position and character position of the
cursor, the size of the file, and the character after the cursor. Sce scction 11.4 [Control-X
=], page 47.

L0 L a0 0T S0 1 G 0 060 0 000V E R

a4 0] a1 st s P 1 |

o 1 o s o g

[
1 et ot o b i

AN OB L LRt bt

i =
I
: =
E =
i3
]

A
i

Command Index 183

Control-X 1. (*R Count Lines Page)

Control-X |. prints the number of lines in the current page, and how many come before or
after point. Sce scction 18 [Control-X 1], page 79.

Keyboard Macros

Control-X ((*R Start Kbd Macro)
Control-X (begins defining a keyboard macro. Sce section 22.8 [Control-X (], page 124.

Control-X) (*R End Kbd Macro)
Control-X) terminates the definition of a keyboard macro. Sce section 22.8 [Control-X)],
page 124,)
Control-X I: (*R Cali Last Kbd Macro)
Control-X | exccutes the most recently defined keyboard macro. See szetion 22.8
[Control-X B, page 124.
Control-X @ (R Kbd Macro Query)

Control-X Q in a keyboard macro can ask the user whether to continuce or allow him to do

some cditing before continuing with the keyboard macro. Sece section 22.8 [Control-X Q),
page 124,

Minibuffer

Control-% (~R Replace String)
Control-% invokes a minibuffer containing a call to Replace String. You fill in the
arguments. Sce section 19 [Control-%), page 83.

Meta-Altmode (R Exccute Minibuffer)
Meta-Altmode invokes an empty minibuffer which you can fill in with a THCO program to
be executed. Sce section 23 [Meta-Altmodc], page 127.

Mcta-% (“R Query Replace)
Mcta-"% invokes a minibuffer containing a call io Query Replace. You fill in the
arguments. Sce section 19 [Meta-%}, page 83.

Control-X Altmode (*R Re-exccute MinibufTer)

Control-X Altmode re-exccutes a TECO program previously executed in the minibuffer.

It can also re-exccute an cxtended command. Sce section 23 [Control-X Altmode],
page 127.

S 4 o g st o D ot

0 codd e e 0 K3t b

T LT A B 0 e

,
i

i

s

)
f

sl

f
W

I A Al

{

=

i

AT b

MACS Manual for I'1'S Users

E

W > 0 Ot

o sl o R

Catalog of Libraries

Catalog of Libraries

Libraries Used Explicitly

These are libraries which you must load with M-X load librarylibnamed<ce> 6 use. If no
cross-reference is given, the only documentation for the library is the self-documentation contained in it. Use
M-X List Libraryé<iionamed<cr> to print a bricf description of cach function in the library. For more

dewiled information, load the library and use M-X Describe on individual functions.

ABSTR contains commands for making documentation files: wall charts, and abstracts of libraries.
Scc the file INFO;CONV >, node Top.

AUTO-S is an alternate implementation of Auto Save mode. It has some features which the
standard version lacks, and lucks some which the standard version has.

BABYL. is a subsystem for reading, sending and editing mail. Sce the file INFO:BABYL. >, node
Top.

BCPL. implements BCPL. mode.
BLISS implements BLISS mode.
CHESS implements commands for editing pictures of chesshoards.

COLLUMNS implements commands for converting single-column texi into deable-column text and vice
versa.

DELIM implements commands for moving cver balanced groupings of varous kinds of
parcitheses. There are a pair of commands for square brackets, a pair for angle brackets,
clc.

DOCLSP prints documentation from the MacL.isp manual on a spccified Lisp function.

XOCOND is a macro processor and conditionalizer for text files, uscful for maintaining multiple
versions of documents with onc source.

EAKMACS EAK’s personal library.

FORTRAN implemeats FORTRAN mode.

HAZI510 redefines commands to be convenient on Haveltine 1510 terminals.
INFO peruscs tree-structured documentation fifes,

T IVORY is FAK and ECC's own generator for EMACS librarics. which uscs a slightly differem
input format. The librarics EAKMACS. IVORY, MKDUMP, TMACS :nd WORDAB,
and all of BABYL., are generated with IVORY.

L e TSI - e
e = e - -

. ceEa s o -

186

JOURNAL

LEDIT
LISPT
LUNAR

MACCNYV

MAZLIB

MKDUMP

MODLIN
MQREPL
NEWS
OUTLIN
PAGE

PASCAL.
PHRASE

PICTURE

PLI

PURIFY

QSEND
RENUM
RMAIL
RUNOFF

SCRLIN

SLOWLY

TOEBUG

Y T v ALy

EMACS Manual for I'1S Users

f—

Al A

implements journal files. See scction 24.4 [Journals], page 133.

is the EMACS side of the EMACS-to-Macl.isp interface. Sce the file INFO;LEDIT .
is the EMACS side of another EMACS-to-MaclLisp interface. See the file INFO:LISPT .
is Moon’s personal library.

docs part of the work of converting MACRO-10 code to MIDAS code.

is a game for solving mazes. Its fun to play.

aids in dumping vour own customized environment.

implements a fancier mode line display.

works with TAGS to perform several Query Replaces on cach of the files in a tag table.
is for rcading the latest AP or New York "Times news summary.

implements Outline mode, for editing outlines.

defines commands for viewing only enc page of the file at a time. Sce scction 18.1
[PAGE]. page 80.

implements PASCAL mode. Sce the file INFO;EPASC).
has commands for moving over and killing phr.ses of text.

contains Edit Picture, the command for editing text pictures. See section 26 {PICTURE],
page 151.

implements PL1 mode. Sce the file INFO;EPL .

generates libraries from EMACS source files, and contains other functions useful fer
cditing the source files. Sce the file INFO:CONV 3.

sends a message to another logged-in user, like :QSEND.
reaumbers figures. cquations, theorems or chapters.
is for reading, cditing and scading mail.

is for text-justified documents divided into scparate source files. It rejustifies the fiks
which have changed, then runs :@ to print only the pages which have changed.

contains alternative definitions of C-N and C-P which move by screen lincs instead of by
real tines.

redefines commands iand options to suit slow ierminals.

is a debugger for TECO programs. 1t displays the buffer in one window and the program
in the oincr. while stepping by lines or sciting breakpuints. Sce the file INFQO;
TDEBUG >, node Top.

Catalog of Librarics

TEX implements TEX mode.

TIME causcs the current time of day to be displayed in the mode line.

TMACS contains miscellancous useful functions

VT100 defines the arrow keys and numeric keypad of the V1-100 terminal to move the cursor and
supply numeric arguments.

VT52 defincs the numeric keypad of the VT-52 terminal to supply numeric arguments.

Automatically Loaded Libraries

‘These are libraries which the user need not know about to use.

AUX implements several commands described in the manual as part of the standard EMACS.
|.0aded automatically when necded.

BABYLV is an auxiliary library for BABYL..

BARE contains the definitions of all built-in functions. These definitions are not needed for
exccuting the built-in functions, only so that Help can describe them properly. Loaded
automatically by documentation commands when nceded. Sce sectien 5.2 [BARE],
page 21.

DIRED implements the commands for editing and listing dircctorics. Loaded automatically whei
nceded. Sce section 13.6 [DIRED), page 69.

EINIT is used in building and dumping EMACS. Scc the file INFO;CONV >,
EMACS is the main body of standard EMACS. Always loaded.

GRIND implements C-M-G. Loaded automatically when needed. Sce section 20.7 [Grinding],
page 96.

KBDMAC implements keyboard macros. l.oaded automatically when needed. See section 22.8
[Keyboard Macros), page 124

KRS is an auxiliary file for BABYL.

SORT implements the sorting commands. 1Loaded automatically when needed.

SVMIENU is an auxiliary file for BABYL..

TAGS implements the TAGS package. See section 21 [YAGS), page 101.

WORDA#B implements Word Abbrev mode, loaded automatically when needed. Sce section 25
[WORDAB], page 141.

188 EMACS Manual for I''S Users

[P ————

'ﬁ\

T e . T Rt

Index of Variables

L L

- & [
: Index of Variables
£ An option is a variable whosc value Edit Options offers for editing. A hook variable is a variable which is
; normally not defined, but which you can definc if you wish for customization. Most hook variables require
TECO programs as their values.
2 The default value of the variable is given in parenthescs after its name. If no value is given, the default
B value is zero. Ifthe word “nonexistent” appears, then the variable does not exist unless you create it
f” Abort Resumption Message
“This is the message to be printed by C-] to tell you how to resume the aborted command. 3
. - - . .]
1 If this variable is zero, there is no way to resume, so C-} asks for confirmation. See
= section 24.1 {Quitting}, page 129.

Additional Abbrev Expanders (noncxistent)

If this variable cxists when Word Abbrev Mode is turned on, it is string of characters which :
should terminate and expand an abbrev, in a<dition to the punctuation characters which

normally do so. Sce also WORIAB Ins Chars, :
Atom Word Mode

The minor mode Atom Word maodce is on if this variable is nonzero. See section 22.1
[Atom Word Maodel, page 111

Auto Dircctory Display

If this is nonzero, cenain file operations automatically display the file dircctory. See
section 13.1 {Aute Directory Display}, page S5.

Auto Fill Mode The minor mode Aute Fill mode is on if this variable is nonzero. Sce scction 11.4 [Auto
Fill Modc], page 47.

“Wﬂ P

Auto Push Point Notification
The value of this variable is the string printed in the echo arca by some commands to

TR
;rw,ﬂ%%

notify you that the mark has been set to the old location of puint. Sce scction 10 [Auto
Push Point Notification], page 41. :
3 Auto Push Point Option (500) :

Scarches set the mark if they move at least this many characters, Sce section 10 [Auto Push
Point Option), page 41.
Auto Save Default

‘F'he minor mode Auto Save mode is on by default for newly visited files if this variable is
nonzero, See section 13.3 [Auta Save Default], page 57.

Aute Save Filenames (DSK :<working directory>; _~RSV)Y)

These are the fllenames used for auto saving if the visited filenames are not used. Sce
sectivn 13.3 {Auto Save Filenames), page 57.

.-

Auto Save Interval (500)
‘Ihis is the number of characters between aute saves. Sce section 13.3 [Auto Save Interval),

Dbt |

=
=1

190 EMACS Manual for I'1'S Users

page 57.

Auto Save Max (2)
This is the maximum number of auto saves to keep. Sec section 13.3 [Auto Save Max],
page 57.

Auto Save Visited File
If this is nonzero, auto saving saves as the visited filenames. If this is zero, au.o saving
saves as the names which are the value of Auto Save Filenames (g.v.). Sce section 13.3
[Auto Save Visited File], page 57.

Autoarg Mode When Autoarg Mode is nonzero, numeric arguments can be specificd just by typing the
digits. Sce section 4 [Autoarg Modc}, page 17.

Buffer Creation Hook (nonexistent)
If this variable exists, its value should be a ‘TECO program to be executed whenever a
newly created buffer is sclected for the first time. Sce section 14 [Buffer Creation Hook],
page 67.

Buffer Deselection Hook (nonexistent)
If this variable exists, its value should be a TECO program to be executed whenever a
buffer is about to be desclected. The difference between this and Buffer Selection Hook is
that, whiie both.are executed (if they exist) when you switch bullers, this is executed hefore
the switch. and Buffer Selection Hook is exccuted after the switch. Sce section 14 {Buffer
Deselection Houk], page 67.

Buffer Sclection Hook (nonexistent)
If this variable exists, its value should be a TECO program to be executed whenever a
buffer is selected. Sce section 14 [Buffer Selection Hook}, page 67.

Casc Replace (1) When Case Replace is nonzero, Replace String and Query Replace attempt to preserve
casc when they replace. Sce section 19 [Case Replace). page 83.

Comment Begin This is the string used to start comments. If the value is zero, semicolon is used. See
section 20.5 {Comment Begin], page 91.

Comment Column
This is the column at which comments are aligned. Sce section 20.5 [Comment Column},
page 91.

Comment End ‘This is the string which is used to end comments. 1t is often empty for languages in which
comments end at the end of the linc. Sece section 20.5 [Commcent End), page 91.

Comment Rounding (/8 +1*8)
‘This is the TECO program used to decide what column to start a comment in when the text
of the line goees past the comment column. ‘The argument to the program is the column at
which text ends. Sce section 20.5 [Comment Rounding), page 91.

Comment Start ~ “Ihis is the string used for recognizing cxisting comments, and for starting new oncs if
Conunent Begin is zero. 1f Comment Start is zero, semicolon is used. Sce scction 20.5
[Comment Stat], page 91.

Compile Command (noncxistent)

\%ﬂ J

"
1l

— muw‘wlﬂ?"lﬂwmw (Y
-

Index of Variables

If this variable exists, its value should be a TECO program to be used by the M-X Compile
comimand to compile the file. See section 20.2 {Compile Command}, page 88.

Default Major Mode (Fundamental)
‘This is the major mode in which new buffers are created. If it is the null string, new
buffers are created in the same mode as the previously sclected buffer. Sec section 14
[Default Major Modc}, page 67.

Directory Lister (& Subsct Dircctory Listing)
This is the TECO program used for listing a dircctory for C-X C-D and the Auto Dircctory
Display option. The default value is the definition of the function & Subset Directory
Listing. Another usefil value is the definition of the function & Rotated Directory
Listing.

Display Matching Paren (-1)
‘Fhis variuble controls automatic display of the matching open parenthesis when a close
parcenthesis is inserted. Sce section 20.4 [Display Matching Paren), page 90.

EMACS Version This variable’s value is the EMACS version number.

Exit Hook (noncxistent)
If this variable cxists, its value should be a 'TECO program to be exccuted whenever
1EMACS is cxited. ‘The subroutine & Exit EMACS is responsible for exccuting it. Sec
section 6.2 [Exit Hook], page 26.

Fill Column (79) ‘The value of Fill Column is the width used for filling text. Sce scction 11.4 [ill Column},
page 47.

Fill Extra Space List (.71)
The chagacters in this string arc the ones witich ought to be followed by two spaces when
textis filled. Scescction 11.4 [14il] iixtra Space List], page 47.

Fill Prefix The value of this variable is the prefix expected on every line of text before filling and
placed at the front of cvery line after filling. It is usually empty, for filling nonindented
text. Sce section 11.4 [Fill Prefix], page 47.

Find File Inhibit Write
If this variable is nonzero, then C-X C-F visits files in rcad-only (C-X C-R) fashion.
Normally, C-X C-F visits files as if C-X C-V were bcmg used. Sce scction 14 [Find File
Inhibit Writc], page 67.

Indent Tabs Mode (-1)
If Indent Tabs Mode is nonzero, then tab characters are used by the indent commands.
Otherwisc, only spaces arc used. Sce section 11.3 [Indent-"Tabs Modc], page 46.

Inhibit Write If Inhibit Write is nonzcro, then there will be no offer to save the visitea file if another file
is visited in the same buffer. C-X C-R sets this variable nonzero. Sce section 13.1 [Inhibijt
Writc], page 55.

libnaine> Setup Hook (nonexistent)

11 this variable cxists, its value should be a TECO program to be executed when the hbnry
Clibazmed is loadzd, “The library’s Sctup function is responsible for doing this. If the
library has no Sctup function, it will not handle a sctup hook cither. See section 22.2

|

#al

N L,

¥
=
H
i
.
3

192 EMACS Manual for I'T'S Users

[Librarics], page 112.

<mode> ..D (nencexistent)
This variable is uscd by the major mode <modc) to record the syatax table for that mode.
1t is created by the first use of the mode, and if you supply your valuc, that value will be
accepted instcad. For example, Text mode uses ‘Text ..D. Sece section 22.4 [Syntax],
page 115.

<modce> Mode Hook (nonexistent)
If this variable exists, its value should be a TECO progra.n to be executed wiren the major
mode {modec) is entered. For cxample, Text Mode Hook is exccuted when Text mode is
entered. Scc section 20 [Major Modces), page 87.

Next Screen Context Lines (nonexistent)
If this variable exists, its value should be the number of lines of overlap between one
screenful and the next, when scrolling by screens with C-V and M-V. See scction 15 [Next
Screen Context Lines], page 71.

Only Global Abbrevs (noncxistent)
If this variable cxists and its value is nonzero, then Word Abbrev Mode assumes that you
are not using any mode-specific abbrevs. Sce scction 25.2.1 [Only Global Abbrevs),

page 145.

Overwrite Mode If this is nonzero, the minor mode Overwrite mode is in cffect. Sce section 22.1 [Overwrite
Mode], page 111.

Page Delimiter (11.) .
‘This is the TECO scarch string used to recognize page boundaries. Sce section 18 [Page
Delimiter]. page 79.

PAGE Flush CRLF (0)
If this is nonzero, the PAGE library expects every page to start with a blank line which is
not considered part of the contents of the page. Sce scction 18.1 [PAGE Flush CRILLF],
page 80.

Paragraph Delimiter (.+O 10 10’10@)
This is the TECO scarch string used to rccognize beginnings of paragraphs. See
scction 11.2 [Paragraph Delimiter], page 44.

Permit Unmatched Paren (-1)
Controls whether the bell is run if you insert an unmatchid close parenthesis. Sce
section 20.4 [Permit Unmatched Paren), page 90.

Read Line Delay ‘This is the amount of time, in 30°ths of a second. which EMACS shoutd wait after starting
to read a line of input, before it prompis and staits echoing the input.

Region Query Size (5000)
Many commands which act on the region require confirmation if the region contains more
than this nxiny characters,

Return from Superior Hook (noncxistent)
If this variable cxists, its value should be a THCO program to be cxecuted whenever
EMACS is resumed after being cxited. Sce section 6.3 [Return from Superior Hook},

)

e
m&lﬁIl{IIKIlﬂﬂiﬂlﬁﬂI‘Wiﬂl{:uul!i%tkﬂrnemmwwmimm.mw,..~,‘ AR Y]

ety

i

]

L
) WMWWWWL

e S e e e ke

- o =S S

Index of Variaoles 193

page 26.

Set Mode Line Hook

This is 2 hook which is executed every time the mede line is recomputed. It can insert text
in the buffer to put it in the mode line after the minor mades. Sce section 1.1 [Sct Mode
Line Hook], page 6.

Spacc Indent Flag
If this flag is nonzero, then Auto Fill indents the new lines which it creates, by performing

a Tab. Most major modes for programming languages set this nonzero. Sec section 11.4
[Space Indent Flag), page 47.

Tab Stop Definitions (a string)
‘T'he value of "Fab Stop Definitions is a string defining the tab stops to be used by the
command M-I (R "T'ab to Tab Stop). Sce section 1.3 [Tab Stop Definitions), page 46.

T'ags Find File (nonexistent)
If this variable exists and is not zcro, TAGS uses C-X C-F to switch files. Otherwise,
T'AGS uses C-X C-V. See scction 21 [TAGS], page 101.

Temp File FN2 List (MEMOtOXGP10 ...) ‘This is a TECO scarch string which recognizes the filenames
which indicate that the filc is probably temporary. Sce scction 13.5 [T'emp File FN2 List),
page 59. .

Underline Begin (nonexistent)
If this variable exists, its value should be the character or string to use to begin underlines
for the M-_ command. Sce section 11.7 [Underline Begin], page 51.

Undecrline End (nonexistent)
If this variable exists, its valuc should be the character or string to usc to end underlines for
the M-_ command. Sce scction 11.7 [Underline End], page S1.

Visit File Hook (nonexistent)
If this variable exists, its value should be a TECO program to be executed whenever a file
is visited. Sce section 13.1 [Visit File Hook], page 55.

WORDARB Ins Chars (nonexisteat)
If this variable cxists when Word Abbrev Mode is turned on, it should be a string
containing preciscly those characters which should terminate and cxpand an abbrev. Thais
variable overrides Additional Abbrev Expanders (q.v.). Sce section 25.2.1 [WORDAB],
page 145.

P e . e R S

*

EMACS Command Chart (as 0 03/27/80)

O AR o

Non-Control N<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>